期刊文献+

直流电压下基于电液耦合动力学原理的微喷试验研究 被引量:8

Experiment on EHD Printing under DC High Voltage
下载PDF
导出
摘要 基于直流电压作用下的电液耦合微喷印系统,考察了溶液浓度和电压两个参数对喷印过程和沉积形态的影响。实验结果表明射流在收集板上沉积的宽度随溶液浓度增大而减小;浓度低时射流沉积为连续形态;浓度增大,射流沉积为液滴-细线相间或者液滴-卫星液滴相间的珠状结构;浓度增大至18%时,产生纳米纤维,直径600nm左右。对给定的EHD实验系统,仅当电压值在2.6kV~4.8kV范围内变化时可保证稳定喷射;且随着电压值增大,珠状结构的直径减小;电压值在该范围之外,无法实现稳定喷射。 Based on the EHD printing system under the DC high voltage, the influence of the concentration of solution and the voltage value on jetting process and the collected lines is investigated. Experimental results show that the collected line gets thinner with the concentration of solution increasing. The collected line is continuous at low concentration of solution. The bead form of a droplet with a filament or satellite droplets is collected with the concentration of solution increasing. At 18% concentration of solution nanofibre with the diameter of 600nm is collected. For a given EHD printing system, When the voltage value is in the range of 2.6kV~4.8kV, the jetting process is stable and the diameter of the bead decreases with the voltage value increasing. Outside this range, the stable jetting process can not happen.
出处 《传感技术学报》 CAS CSCD 北大核心 2010年第7期918-921,共4页 Chinese Journal of Sensors and Actuators
基金 高等学校科技创新工程重大项目培育资金项目资助(708055) 国家863项目资助(2007AA04Z308) 国家自然科学基金项目资助(50675184)
关键词 电液耦合动力 直流电压 实验参数 珠状结构 纳米纤维 Electrohydrodynamics DC high voltage Experimental parameters Bead form Nanofibre
  • 相关文献

参考文献12

  • 1Lee D Y,Shin Y S.Electrohydrodynamic Printing of Silver Nano-particles by Using a Focused Nanocolloid Jet[J].Applied Physics Letters,2007,90,081905.
  • 2Wang D Z,Edirisinghe M J.Solid Freeform Fabrication of Thin-Walled Ceramic Structures Using an Electrohydrodynamic Jet[J].J.Am.Ceram.Soc.2006,89(5):1727-1729.
  • 3Hidetoshi Matsumoto,Tomoya Mizukoshi.Organic/inorganic Hybrid Nano-Microstructured Coatings on Insulated Substrates by Electrospray Deposition[J].Journal of Colloid and Interface Science,2005,286:414-416.
  • 4Jayasinghe S N,Townsend-Nicholson A.Stable Electric-Field Driven Cone-Jetting of Concentrated Biosuspensions[J].Lab on a Chip,2006(6):1086-1090.
  • 5Hartman R P A,Brunner D J,Marijnissen J C M,et al.Electrohydrodynamic Atomization in the Cone-Jet Mode Physical Modeling of the Liquid Cone and Jet[J] ,J.Aerosol Sci.1999,30:823-849.
  • 6Ahmad Z,Zhang H B,Farook U,et al.Generation of Multilayered Structures for Biomedical Applications Using a Novel Tri-Needle Coaxial Device and Electrohydrodynamic Flow[J].J.R.Soc.2008,5:1255-1261.
  • 7Youn D H,Kim S H.Electrohydrodynamic Micropatterning of Silver ink of Using Near-Field Electrohydradynamic Jet Printing with Tilted-Outlet Nozzle,Appl.Phys.A-Mater,2009,96:933-938.
  • 8Deitzel J M,Kleinmeyer J.The Effect of Processing Variables on the Morphology of Electrospun Nanofibers and Textiles[J].Polymer,2001,42:261-272.
  • 9Van Dam Dirkjan B,Le Clerc Chritophe."Experimental Study of the Impact of an Ink-Jet Printed Droplet on a Solid Substrate"[J].Physics of Fluids,2004,16(9):3403-3414.
  • 10Poon H F.Electrohydrodynamic Printing[D].Dept.Chem.Eng,Princeton Univ,USA,2002.

同被引文献40

引证文献8

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部