期刊文献+

高阶微分算子在直和空间上的Friedrichs扩张的辛几何刻画

Complex Symplectic Geometry Characterization for the Friedrichs Extension of the High Order Differential Operators in Direct Sum Spaces
下载PDF
导出
摘要 通过最大与最小算子域构造了一个辛空间,用辛空间中的完全Lagrangian子流形与对称微分算子自共轭扩张的一一对等关系,研究对称微分算子自共轭域的辛结构,从辛几何的角度给出直和空间上正则型高阶微分算子的Friedrichs扩张域的代数结构. In this paper,we define symplectic spaces and their Lagrangian submanifold by the domains of the maximal and the minimal operator.Applying basic algebraic properties of Lagrangian submanifold of symplectic spaces and self-adjoint extensions of symmetric differential operators,the symplectic structure of ordinary differential operators are studied and the symplectic geometry characterization for the Friedrichs extensions domains of the minimal operators of regular high order differential operators are given in direct sum spaces.
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 2010年第4期336-340,共5页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10961019) 内蒙古自然科学基金资助项目(2009MS0114) 内蒙古师范大学2009年博士研究生科研项目创新基金(CXJJB09002) 内蒙古高等学校科学研究项目(NJ10047)
关键词 直和空间 Friedrichs扩张 辛几何 子流形 direct sum spaces Friedrichs extension symplectic geometry Lagrangian submanifold
  • 相关文献

参考文献4

二级参考文献23

  • 1郭芳,孙炯.无穷区间上的二阶奇型对称微分算子自共轭域的辛几何刻画[J].内蒙古大学学报(自然科学版),2005,36(4):361-366. 被引量:1
  • 2Everitt W N,Markus L. Complex symplectic geometry with applications to ordinary differential operators [J]. Transactions of the American Mathematic Society, 1999,351 (12) : 4 905-4 945.
  • 3Sun Jiong. On the self-Adjonint extensions of symmetric ordinary Differential Operators with middle deficiency indices[J]. Acta Math. Sinica,New Series,1986(2) : 152-157.
  • 4Kalf H. A characterization of the Friedrichs extension of Sturm-Liouville operators [J]. J London Math Soe, 1978, 17(2) : 511-521.
  • 5Moller M,Zettle A. Symmetric differential operators and their Friedrichs extension [J]. J Differential Equations, 1995, 115:50-69.
  • 6Moller M,Zettle A. Semi-boundedness of ordinary differential operators [J]. J Differential Equation, 1995,115: 24-29.
  • 7Everitt,Zettl W N. Sturm-Liouville differential operators in direct sum spaces [J]. Rocky Mountain J Math, 1986,16(3): 497-516.
  • 8Naimark M A. Linear Differential Operators [M]. New York:Ungar,1968.
  • 9Wei G,Xu Z,Sun J. Seif-adjoint domains of products of differential expressions [J]. Journal of Defferential Equation, 2001,174:75-90.
  • 10Marietta M,Zettle A. The Friedrichs extension of singular differential operators [J]. Journal of Differential Equation, 2000,160:404-421.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部