期刊文献+

加权最小二乘无网格法求解亥姆霍兹方程 被引量:7

Meshless least-squares method for solving Helmholtz equation
原文传递
导出
摘要 在移动最小二乘近似的基础上,直接使用最小二乘法建立系统的变分公式,导出了亥姆霍兹方程的加权最小二乘无网格(MWLS)法公式.MWLS法兼有伽辽金型无网格法和配点型无网格法精度高、收敛快的优点,并且克服了伽辽金法计算量大、配点法不稳定的缺陷.通过一维算例讨论了MWLS法应用于亥姆霍兹方程时各种参数的影响以及最佳参数的选择,通过二维算例证明该方法计算效率高于无单元伽辽金法(EFGM).数值结果表明MWLS法求解亥姆霍兹方程具有效率高、精度高和稳定性好的优点.对高波数波动问题给出了精确的模拟. On the basis of moving least-squares approximation (MLSA),the formulation of the meshless weighted least-squares (MWLS) method to solve the Helmholtz equation is proposed. The variation formulation was constructed on the least-squares discrimination. MWLS method combines the advantages of the Galerkin method and the collocation method and overcomes the disadvantage of large calculation of the Galerkin method and instability of the collocation method. The MWLS computational parameters are chosen based on a thorough numerical study of 1-dimensional problems. Several 2-dimensional examples show that the MWLS method is more efficient than the element free Galerkin method (EFGM). These numerical results show that the MWLS method is high efficiency,high accuracy and well stability,which gives accurate simulation of high wave number of acoustical waves.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第7期40-43,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(10872075)
关键词 移动最小二乘近似 亥姆霍兹方程 无网格法 高波数 伽辽金法 moving least-squares approximation (MLSA) Helmholtz equation meshless method high wave number Galerkin method
  • 相关文献

参考文献12

  • 1Belytschko T. Lu Y Y. Gu L. Element free Galerkin methods[J]. Int J Numer Meth Engrg. 1991. 37: 229-256.
  • 2Bclytschko T, Krongauz Y. Organ D, et al. Meshless methods: an ovorview and recent developments [J]. Comput Methods Appl Meeh Engrg, 1996, 139:3-17.
  • 3Bouillard P, Sulcau S. Accurate acoustic compulations using a meshless method[J]. Comp Assist Mech and Eng Se. 2001. 8:415-468.
  • 4Bouillard P, Suleau S. Element-free Galerkin solutions for Helmholtz problems: formulation and numerical assessment of the pollution effect[J]. Comput Methods Appl Mech Eng, 1998, 169:317-335.
  • 5de Bel E, Bouillard P. A coupled partition of unityelement free Gaderkin method for 2D vibro-acoustics [C]//Proc of the Fifth World Congress on Computational Mechanics (WCCM-V). Vienna: Vienna University of Technology, 2002: 508-513.
  • 6Lacroix V. Bouillard P. 3D acoustical analysis using an iterative multilevel meshless method[C]//Proc of the Fifth World Congress on Computational Mechanics (WCCM-V). Vienna: Vienna University of Technology. 2002:885-889.
  • 7娄路亮,曾攀.双材料界面裂纹应力强度因子的无网格分析[J].航空材料学报,2002,22(4):31-35. 被引量:37
  • 8Pan X F, Zhang X, Lu M W. Meshless Galerkin least-squares method[J]. Comput Mech, 2005, 35: 182-189.
  • 9Liu Y, Zhang X. Lu M W. Meshless least-squares method for solving the steady state heat conduction equation[J]. Tsinghua Science and Technology, 2005, 10(1): 61 66.
  • 10LIU G R,GU Y T.无网格法理论及程序设计[M].王建明,译.济南:山东大学出版社,2007.

二级参考文献10

  • 1WILLIAMS M L. The stress around a fault or crack in dissimilar media[J]. Bulletin of the Seismological Society of America, 1959,49 : 199-204.
  • 2CHEN M C, SZE K Y. A novel hybrid finite element analysis of bimaterial wedge problems [J]. Engineering Fracture Mechanics,2001,68 : 1463-1476.
  • 3CHRISTINA B, CHRISTER P. A numerical method for calculating stress intensity factors for interface cracks in bimaterials[J]. Engineering Fracture Mechanics, 2001,68:235-246.
  • 4PAN E,AMADEI B. Boundary element analysis of fraeture mechanics in anisotropic bimaterials[J]. EngineeringAnalysis with Boundary Elements, 1999,23:683-691.
  • 5BELYTSCHKO T, LU Y Y, GU L. Element-free galerkin method[J]. Int J Numer Methods Engrg,1994,37:229-256.
  • 6HELD M. Voronoi diagrams and offset curves of curvilinear polygons [J]. Computer-Aided Design, 1998, 30(4) :287-300.
  • 7HUANG H, KARDOMATEAS G A. Mixed-mode stress intensity factors for cracks located at or parallel to the interface in bimaterial half planes[J]. International Journal of Solids and Structures,2001,38:3719-3734.
  • 8FINLAYSON E F. Stress intensity factors distributions in bimaterial systems: A three-dimensional photoelastic investigation [D]. Virginia: Virginia Polytechnic Institute and State University, 1998.
  • 9SMELSER R E. Evaluation of stress intensity factors for bimaterial bodies using numerieal earek flank displacement data [J]. Int J Fracture, 1979, 15 : 135-143.
  • 10张明,姚振汉,杜庆华,楼志文.双材料界面裂纹应力强度因子的边界元分析[J].应用力学学报,1999,16(1):21-26. 被引量:15

共引文献41

同被引文献60

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部