期刊文献+

基于波谱单元法的结构动力响应分析 被引量:1

Dynamic analysis of structures by using spectral element method
原文传递
导出
摘要 通过修改波谱单元法中单元刚度矩阵的波数,在既有波谱单元算法基础上引进了结构外部粘滞阻尼和内部粘弹性阻尼.采用拉普拉斯变换替代快速傅里叶变换,克服了基于快速傅里叶变换的波谱单元法主要用于分析无限长和半无限长结构的局限性.数值计算结果表明:考虑了外部粘滞阻尼和内部粘弹性阻尼后,采用波谱单元法仍能十分简便地计算结构的动力响应,并大大减少单元数量,提高计算效率.对于文中算例,相比于有限元法,波谱单元法在精度大幅提高的情况下,计算时间至少节约了50%. An extended spectral element method (SEM) for structural dynamic analysis is proposed. Both external viscous damping and internal viscoelastic damping of structures were considered in this method. The damping of structure was introduced by modifying the wave number in the spectral element stiffness matrix. Because of the periodicity of fast Fourier transform (FFT),the FFT-based SEM mainly concentrated on infinite or semi-infinite elements. Laplace transform instead of FFT is presented to avoid the periodicity in SEM. In order to verify the effectiveness of SEM,the numerical results obtained from SEM were compared with those obtained from the finite element method (FEM). The results show that by modifying the wave number properly,both internal viscoelastic damping and external viscous damping can be considered without any difficulty. The SEM has been proved to be an efficient method to analyze the dynamic responses of structures while the numbers of elements can be greatly decreased. The SEM can obtain up to 50% reduction in computations versus traditional FEM for numerical simulation.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第7期62-65,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家杰出青年科学基金资助项目(50925828) 国家自然科学基金资助项目(50778077)
关键词 波谱单元法 阻尼 波数 有限元 动力响应 spectral element method (SEM) damping wave number finite element method (FEM) dynamic analysis
  • 相关文献

参考文献11

  • 1Lee U. Vibration analysis of one-dimensional structures using the spectral transfer matrix method[J]. Engineering Structures. 2000. 22: 681-690.
  • 2Dolyle J F, Farris T N. A spectrally formulated finite element for flexural wave propagation in beams[J]. The International Journal of Analytical and Experimental Modal Analysis. 1990, 5(2): 99-107.
  • 3Dolyle J F, Farris T N. A spectrally formulated finite element for wave propagation in 3 D frame structures[J]. The International Journal of Analytical and Experimental Modal Analysis, 1990. 5(4): 223-237.
  • 4Dolyle J F. A spectrally formulated finite element for longitudinal wave propagation[J]. The International Journal of Analytical and Experimental Modal Analysis, 1988. 3(1): 1-5.
  • 5Lee U, Kim J, I.eung A Y T. The spectral element method in structural dynamics[J]. The Shock and Vibration Digest. 2000, 32(6): 151-165.
  • 6Cho J, Go H Lee U. Dynamic response of the spec tral element model by using the FFT[J]. Key Engi neering Materials, 2007. 345-316:845-848.
  • 7Lee U, Cho J. FFT-based spectral element analysis for the linear continuum dynamic systems subjected to arbitrary initial conditions by using the pseudo-force method [J], International Journal for Numerical Methods in Engineering, 2007, 74(1): 159-174.
  • 8Lee U, Lee C. Spectral element modeling for extended Timoshenko beams[J]. Journal of Sound and Vibration, 2009, 319(3-5): 993-1 002.
  • 9Lee U, Jang I, Go H. Stability and dynamic analysis of oil pipelines by using spectral element method[J]. Journal of Loss Prevention in the Process Industries. 2009, 22(6): 873-878.
  • 10Igawa H, Komatsu K. Yamaguchi I, et al. Wave propagation analysis of frame structures using the spectral element method[J], Journal of Sound and Vibration. 2004, 277: 1 071-1 081.

共引文献17

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部