期刊文献+

改进的HMM和小波神经网络的抗噪语音识别 被引量:9

Noise robust speech recognition based on improved hidden Markov model and wavelet neural network
下载PDF
导出
摘要 通过MFFC计算出的语音特征系数,由于语音信号的动态性,帧之间有重叠,噪声的影响,使特征系数不能完全反映出语音的信息。提出一种隐马尔可夫模型(HMM)和小波神经网络(WNN)混合模型的抗噪语音识别方法。该方法对MFCC特征系数利用小波神经网络进行训练,得到新的MFCC特征系数。实验结果表明,在噪声环境下,该混合模型比单纯HMM具有更强的噪声鲁棒性,明显改善了语音识别系统的性能。 The feature coefficients based on MFCC are not fully reflecting speech information as a result of speech signal movement and overlap of frames, especially noisy effect.A new method for noise robust speech recognition based on a hy- brid rnodel of Hidden Markov Models(HMM) and Wavelet Neural Network(WNN) is presented.The model trained by this method is used in MFCC coefficients.Experimental results show this model has better noise robustness.
作者 肖勇 覃爱娜
出处 《计算机工程与应用》 CSCD 北大核心 2010年第22期162-164,235,共4页 Computer Engineering and Applications
基金 国家自然科学基金No.60634020~~
关键词 隐马尔可夫模型 小波神经网络 鲁棒性 特征系数 Hidden Markov Models(HMM) Wavelet Neural Network(WNN) robustness feature coefficients
  • 相关文献

参考文献5

二级参考文献6

共引文献15

同被引文献94

引证文献9

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部