期刊文献+

基于上下文算术编码的非三角网格拓扑压缩 被引量:1

Connectivity compression for non-triangular meshes by context-based arithmetic coding
下载PDF
导出
摘要 网格拓扑压缩方法是计算机图形学的基础算法。该文方法是单分辨率,主要针对非三角网格模型的拓扑信息作无损压缩。算法首先遍历网格的所有多边形得到操作系列;然后对操作系列作霍夫曼编码;再对霍夫曼编码结果作基于上下文长度可变的算术编码得到最后的压缩结果。相比于对非三角网格拓扑信息作压缩的压缩比很高的算法,该算法得到的压缩结果更好。此算法的另一个突出优点是在解码时间和空间上有了改进——新算法可以在接收一个多边形的编码后立即完成解码并抛弃这个编码,从而使得该算法特别适用于在线传输和解码的实时与交互应用场合。此外,该算法还可以处理有空洞和柄(handle)的模型。 The method that encodes the connectivity information for general polygon meshes is the foundation of graphics field.The algorithm in this paper is a single-resolution lossless compression method for mesh models,mainly for non-triangu- lar mesh models.By the method, all faces are encoded firstly to obtain operator series, then Huffman coder is applied to en- code these operator codes, and finally a context-based arithmetic coder is employed to encode the Huffman codes.This meth- od can provide a higher compression ratio for non-triangular meshes in comparison with the excellent algorithms previously proposed.The new method can save much of the decoding time and space,by introducing a decoding scheme so that the op- erator code can be immediately discarded as soon as it is decoded.Therefore, the decoding method can be well applied to the applications with online transmission and decoding.The algorithm is also capable of handling the meshes with holes and handles.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第22期178-183,共6页 Computer Engineering and Applications
基金 国家部委预研基金资助项目 北京市教委科技发展计划(No.KM200910011007)~~
关键词 基于上下文的算术编码 网格 拓扑压缩 编码 解码 context-based arithmetic coder meshes connectivity compression encode decode
  • 相关文献

参考文献17

  • 1Jong B S,Lin T W,Yang W H,et al.Improved edge-based compression for the connectivity of 3D models[J].IEICE Transactions on Information & System,2004(12):2845-2854.
  • 2Khodakovsky A, Alliez P, Desbrun M, et al.Near optimal connectivity encoding of 2-manifold polygon meshes[J].Journal of the Graphic Models,2002: 147-168.
  • 3Alliez P, Desbrun M.Valence-driven connectivity encoding for 3D meshes[C]//Euro Graphics'01,2001:480-489.
  • 4Isenburg M, Snoeyink J.Face fixer:Compressing polygon mesh- es with properties[C]//Proceedings of SIGGRAPH 2000, 2000: 263-270.
  • 5Szymczak D, King D, Rossignac J.An edgebreaker based efficient compression scheme for regular meshes[C]//Proceedings of 12th Canadian Conference on Computational Geometry, 2000: 53-68.
  • 6Jong B S, Yang W H, Tseng J L, et al.An efficient connectivity compression for triangular meshes[C]//Fourth Annual ACIS Intemational Conference on Computer and Information Science (ICIS' 05),2005 : 583-588.
  • 7Kronrod B, Gotsman C.Efficient coding of non-triangular mesh connectivity[J].Graphical Models,2001:263-275.
  • 8Rossignac J.EdgeBreaker: Connectivity compression for triangle meshes[J].IEEE Transactions on Visualization and Computer Graphics, 1999 : 47-61.
  • 9Lindstrom P, Isenburg M.Lossless compression of hexahedral meshes[C]//IEEE Data Compression Conference 2008, 2008: 192 -201.
  • 10Yoon W E, Lindstrom P.Random-accessible compressed triangle meshes[C]//IEEE Transactions on Visualization and Computer Graphics(Visualization 2007) ,2007,13(6) : 1536-1543.

二级参考文献13

  • 1Alliez P,Desbrun M.Valence-driven connectivity encoding for 3D meshes[C]//Proceedings of Eurographics,Manchester,2001:480-489
  • 2Touma C,Gotsman C.Triangle mesh compression[C]//Proceedings of Graphics Interface,New York,1998:26-34
  • 3Isenburg M,Snoeyink J.Face fixer:compressing polygon meshes with properties[C]//Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,New Orleans,2000:263-270
  • 4Gumhold S,Strasser W.Real time compression of triangle mesh connectivity[C]//Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,New York,1998:133-140
  • 5Isenburg M,Snoeyink J.Spirale reversi:reverse decoding of edgeBreaker encoding[J].Computational Geometry,2001,20(1):39-52
  • 6Jong B S,Yang W H,Tseng J L,et al.An efficient connectivity compression for triangular meshes[C]//Proceedings of the 4th Annual ACIS International Conference on Computer and Information Science.Washington D C:IEEE Computer Society Press.2005:583-588
  • 7Rossignac J.Edgebreaker:connectivity Compression for triangle meshes[J].IEEE Transactions on Visualization and Computer Graphics,1999,5(1):47-61
  • 8Szymczak D,King D,Rossignac J.An edgebreaker based efficient compression scheme for regular meshes[C]//Prgceedings of the 12th Canadian Conference on Computational Geometry,Fredericton,New Brunswick,2000:53-68
  • 9Gotsman C,Gumhold S,Kobbelt L.Simplification and compression of 3D meshes[C]//Iske A,Quak E,Floater M S.Tutorials on Multiresolution in Geometric Modelling.New York:Springer-Verlag,2002:319-361
  • 10Huffman D A.A method for the construction of minimumredundancy codes[J].Proceedings of the Institute of Radio Engineers,1952,40(9):1098-1101

共引文献7

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部