期刊文献+

基于调和函数的张量数据维数约简

Tensor dimensionality reduction via harmonic function
下载PDF
导出
摘要 实际应用中的许多数据,如图像,视频,通常具有张量性和高维性特征,张量数据的维数约简便成为近期的研究热点。现有的张量维数约简方法大都是监督的,它们不能有效利用未标签样本数据的信息。基于调和函数的张量数据维数约简方法综合了传统半监督方法和张量方法的优点,能够在有效利用未标签样本信息的同时,保持数据天然的张量结构特征。仿真实验和真实数据上的结果都验证了其有效性。 Most of the real-world data, such as images and videos,are always represented by tensor and high-dimensionality form,which make tensor data dimensionality reduction the hot issue in recent research.Due to the supervised view of point, most of the present tensor dimensionality reduction methods cannot take full advantage of the unlabeled data.Combining the advantages of traditional semi-supervised methods and tensor-based methods, Tensor Dimensionality Reduction via Harmonic Function(TDRHF) can make full use of the unlabeled data while maintaining the natural tensor structure of the data.The ef- fectiveness of the method is verified by both simulations and real:world data.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第22期184-186,共3页 Computer Engineering and Applications
基金 国家自然科学基金No.60975038~~
关键词 调和函数 张量数据 维数约简 harmonic function tensor data dimensionality reduction
  • 相关文献

参考文献7

  • 1Jolliffe I.Principal component analysis[M].2nd ed.New York: Springer, 2002.
  • 2Duda R O, Hart P E, Stork D G.Pattem classification[M].2nd ed.Hoboken, NJ: Wiley-Interscience, 2000.
  • 3Zhang D,Zhou Z H, Chen S.Semi-supervised dimensionality reduction[C]//SIAM Conference on Data Mining.Philadelphia, PA: Society for Industrial Mathematics,2007.
  • 4Cai D,He X, Han J.Semi-supervised discriminant analysis[C]// IEEE International Conference on Computer Vision.Washington, DC:IEEE Computer Society,2007:1-7.
  • 5Nie Fei-ping, Xiang Shi-ming, Song Yang-qiu, et al.Extracting the optimal dimensionality for local tensor discfiminant analysis[J]. Pattern Recognition, 2009,42( 1 ) : 105-114.
  • 6张丽梅,乔立山,陈松灿.基于张量模式的特征提取及分类器设计综述[J].山东大学学报(工学版),2009,39(1):6-14. 被引量:5
  • 7Golub G H,van Loan C F.Matrix computations[M].3rd ed.Baltimore:The Johns Hopkins University Press, 1996.

二级参考文献8

  • 1Hongcheng Wang,Narendra Ahuja. A Tensor Approximation Approach to Dimensionality Reduction[J] 2008,International Journal of Computer Vision(3):217~229
  • 2Dacheng Tao,Xuelong Li,Xindong Wu,Weiming Hu,Stephen J. Maybank. Supervised tensor learning[J] 2007,Knowledge and Information Systems(1):1~42
  • 3Zhe Wang,Songcan Chen. New Least Squares Support Vector Machines Based on Matrix Patterns[J] 2007,Neural Processing Letters(1):41~56
  • 4Jieping Ye. Generalized Low Rank Approximations of Matrices[J] 2005,Machine Learning(1-3):167~191
  • 5Christopher J.C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition[J] 1998,Data Mining and Knowledge Discovery(2):121~167
  • 6Pieter M. Kroonenberg,Jan Leeuw. Principal component analysis of three-mode data by means of alternating least squares algorithms[J] 1980,Psychometrika(1):69~97
  • 7J. Douglas Carroll,Jih-Jie Chang. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition[J] 1970,Psychometrika(3):283~319
  • 8Ledyard R Tucker. Some mathematical notes on three-mode factor analysis[J] 1966,Psychometrika(3):279~311

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部