摘要
Recently, Liu et al. proposed a so-called extended Anderson-Higgs mechanism by studying the (2+1)-dimensional Ginzburg-Landau model in the pseudogap region of high-Tc superconductor (Phys. Rev. B 65 (2002) 132513). We revisit this problem based on a general decomposition of the U(1) gauge potential. Using the bulk superconductor and superconduct ring as examples, we obtain a simpler expression for the extended Anderson-Higgs mechanism. In the former case we indicate that all the phase field can always be "eaten up" by the pure gauge term A||. In the latter case, we decompose the phase field as θ(x) = θ1(x) + θ2(x) and find that only the phase field θ1 connected with Anderson-Higgs mechanism can be canceled by the pure-gauge term A||. On the other hand, the remaining phase field θ2 connected with A⊥ is multi-valued, which can induce new physical effects such as A-B effect and flux quantization. It is natural to conclude that there is no longitudinal phase fluctuation effect in high-temperature superconductors since longitudinal phase θ1 is connected with pure-gauge term.
Recently, Liu et al. proposed a so-called extended Anderson-Higgs mechanism by studying the (2+1)-dimensional Ginzburg-Landau model in the pseudogap region of high-Tc superconductor (Phys. Rev. B 65 (2002) 132513). We revisit this problem based on a general decomposition of the U(1) gauge potential. Using the bulk superconductor and superconduct ring as examples, we obtain a simpler expression for the extended Anderson-Higgs mechanism. In the former case we indicate that all the phase field can always be "eaten up" by the pure gauge term A||. In the latter case, we decompose the phase field as θ(x) = θ1(x) + θ2(x) and find that only the phase field θ1 connected with Anderson-Higgs mechanism can be canceled by the pure-gauge term A||. On the other hand, the remaining phase field θ2 connected with A⊥ is multi-valued, which can induce new physical effects such as A-B effect and flux quantization. It is natural to conclude that there is no longitudinal phase fluctuation effect in high-temperature superconductors since longitudinal phase θ1 is connected with pure-gauge term.
基金
Supported in part by the National Natural Science Foundation of China under Grant Nos 10775069 and 10935001, and the Research Fund for the Doctoral Program of Higher Education under Grant No 200802840009.