期刊文献+

环F_2+uF_2+u^2F_2上的常循环码和循环码的Gray象

The Gray Images of Constacyclic and Cyclic Codes over F_2+uF_2+u^2F_2
下载PDF
导出
摘要 通过构造Gray映射Φ,研究了环R=F2+uF2+u2F2上的常循环码和循环码.给出了环R上码是常循环码的一个充分必要条件,证明了环R上长为n的码C是循环码当且仅当Φ(C)是域F2上指标为4长为4n的准循环码.特别的,环R上长为n的线性循环码的Gray像是F2上指标为4长为4n的线性准循环码. By constructing the Gray map Φ,constacyclic and cyclic codes over the ring R=F2+uF2+u2F2 are studied.A necessary and sufficient condition for a code to be constacyclic over R is given.It is proved that a code C of length n over R is a cyclic code if and only if Φ(C) is a quasi-cyclic code over F2 of index 4 and length 4n. In particular,the Gray image of a linear cyclic code of length n over R is a linear quasi-cyclic code of index 4 and length 4n over F2.
作者 梁华
出处 《淮阴师范学院学报(自然科学版)》 CAS 2010年第3期189-191,共3页 Journal of Huaiyin Teachers College;Natural Science Edition
基金 国家自然科学基金项目(60971123) 教育部科学技术研究重点项目(208045) 江苏省自然科学基金项目(BK2008208)
关键词 循环码 常循环码 准循环码 GRAY映射 cyclic code constacyclic code quasi-cyclic code Gray map
  • 相关文献

参考文献5

  • 1Wolfmann J.Negacyclic cyclic codes over Z4[J].IEEE Trans Inform Theory,1999,45(7):2527-2532.
  • 2Ling S,Blackford J.Zp^k+1-linear codes[J].IEEE Trans Inform Theory,2002,48(9):2592-2605.
  • 3Qian J F,Zhang L N,Zhu S X.(1+u)-constacyclic and cyclic codes over F2+uF2[J].Applied Mathematics Letters,2006,19:820-823.
  • 4Amarra M C V,Nemenzo F R.On (1-u)-cyclic codes over Fp^k+uFp^k[J].Applied Mathematics Letters,2008,21:1129-1133.
  • 5QIAN Jian-fa MA Wen-ping.Constacyclic and cyclic codes over finite chain rings[J].The Journal of China Universities of Posts and Telecommunications,2009,16(3):122-125. 被引量:3

二级参考文献16

  • 1Blake F. Codes over integer residue tings. Information and Control, 1975, 29(4): 295-300.
  • 2Shankar P. On BCH codes over arbitrary integer rings. IEEE Transactions on Information Theory, 1979, 25(4): 480--483.
  • 3Nechaev A. The Kerdock code in a cyclic form. Discrete Mathematics and Applications, 1989, 1(1): 123-139.
  • 4Hammons A R Jr, Kumar P V, Calderbank A R, et al. The Z4-1inearity of Kerdock, Preparata, Goethals, and related codes. IEEE Transactions on Information Theory, 1994, 40(2): 301-319.
  • 5Wolfmaim J. Negacyclic and cyclic code over Z4 . IEEE Transactions on Information Theory, 1999, 45(7): 2527-2532.
  • 6Tapia-Recillas H, Vega G. Some constacyclic codes over Z2, and binary quasi-cyclic codes. Discrete Applied Mathematics, 2003, 128(1): 305-316.
  • 7Ling S, Blackford J. Zpk+1-linear code. IEEE Transactions on Information Theory, 2002, 48(9): 2592-2606.
  • 8Qian J F, Zhang L N, Zhu S X. (1+ u )-cyclic and cyclic codes over the ring F2 + uF2 . Applied Mathematics Letters, 2006, 19(8): 820-823.
  • 9Qian J F, Zhang L N, Zhu S X. Constacyclic and cyclic codes over F2+uF2+u^2F2. IEICE Transactions Fundamentals of Electronics,Communications and Computer Sciences, 2006, 89(6): 1863-1865.
  • 10Amarra M V, Nemenzo F R. On (l-u)-cyclic codes over Fpk +uFpkApplied Mathematics Letters, 2008, 21(11): 1129-1133.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部