摘要
研究了复矩阵方程(A~*XA,B^XB)=(C,D)有Hermite半正定解的可解性条件.利用广义奇异值分解,导出了矩阵方程(A~*XA,B~*XB)=(C,D)有Hermite半正定解的充分必要条件,同时给出了通解的表达式.
The complex matrices solutions with Hermite positive semidefinite solution for the matrix equation (A^*XA,B^*XB)=(C,D) are investigated. The necessary and sufficient conditions for the existence of such solutions are derived by using the generalized singular value decomposition. The forms of general solution are also presented.
出处
《湖南理工学院学报(自然科学版)》
CAS
2010年第2期10-13,共4页
Journal of Hunan Institute of Science and Technology(Natural Sciences)
基金
湖南省教育厅一般资助项目(08C395)
关键词
矩阵方程
复半正定
Hermite半正定
广义奇异值分解
matrix equation
complex positive semidefinite
Hermite positive semidefinite
generalized singular value decomposition