期刊文献+

双曲型方程的一类高精度带参数差分格式 被引量:2

High-Precise Schemes with Parameter for Hyperbolic Equation
下载PDF
导出
摘要 用组合差商解法对一阶一维双曲型方程构造出一类截断误差为o(τ~4+h^4)的带参数的三层隐式差分格式,分析了格式的稳定性,并用数值例子验证了理论分析的结果. The paper gives a kind of three-levels implicit difference scheme for the one-order and one-space-dimensional linear hyperbolic equation with combination difference resolution, and its local truncation error is of order o(τ^4 + h^4). The author analyses the scheme's stable. Finally, a numerical example shows that the resolution of theoretic analysis is effective.
出处 《湖南理工学院学报(自然科学版)》 CAS 2010年第2期14-16,22,共4页 Journal of Hunan Institute of Science and Technology(Natural Sciences)
基金 湖南省教育厅资助科研项(06C383) 湖南理工学院院级科研计划项目(2009Y02)
关键词 一维双曲型方程 组合差商解法 隐式差分格式 高精度 one-space-dimensional hyperbolic equation combination difference algorithm implicit difference scheme high-precise
  • 相关文献

参考文献5

  • 1邬华谟.二次多项式根的Schur-Cohn定理和Miller定理的初等证明.数值计算与计算机应用,1982,(3):356-359.
  • 2金承日.解抛物型方程的高精度显式差分格式[J].计算数学,1991,13(1):38-44. 被引量:45
  • 3方春华,张大凯.双曲型方程的组合差商解法[J].贵州大学学报(自然科学版),2004,21(2):136-139. 被引量:8
  • 4R.K.Mohanty and Urvashi Arora.A new discretization method of order fonr for the namerical solution of one-space dimensional second-order quasi-linear hyperbolic equation[J].International Journal of Mathematical Education in Science and Technology,2002,33(6):829-838.
  • 5R.K.Moiianty.An unconditionally stable difference scheme for the one-space-dimensional linear hyperbolic equation[J].Applied Mathematics Letters,2004(17):101-105.

二级参考文献9

  • 1R. K. Mohanty, Urvaahi Arora. A new discretization method of order four for the numerical solution of one-space dimensional second-order quasilinear hyperbolic equation [ J ]. International Journal of Mathematical Education in Science and Technology,2002,
  • 2Richard J. Babarsky,Robert Sharpley. Expanded stability through higher accuracy for time-centered advection schemes[J]. June 1997 American Meteorological Society.
  • 3R. K. Moiianty. An unconditionally stable difference scheme for the one-space-dimensional linear hyperbolic equation [J]. Applied Mathematics Letters ,2004, ( 17 ): 101 - 105.
  • 4李庆扬 王能超 易大义.数值分析(第一版)[M].华中理工大学出版社,1982,7..
  • 5周顺兴,计算数学,1982年,4卷,2期,204页
  • 6杨情民,高等学校计算数学学报,1981年,4期
  • 7马驷良,计算数学,1980年,2期
  • 8李荣华,1980年
  • 9金承日.解抛物型方程的高精度显式差分格式[J].计算数学,1991,13(1):38-44. 被引量:45

共引文献59

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部