期刊文献+

一种基于Memetic算法的非线性方程组求解算法 被引量:1

A algorithm for nonlinear equations based on Memetic algorithm
下载PDF
导出
摘要 提出了Memetic算法求解非线性方程组的策略,在Memetic算法流程中,采用自适应多点交叉和随机点变异策略,在交叉和变异后均通过拟牛顿局部搜索策略对染色体种群进行优化,以提高算法的求解性能.仿真结果表明,所提算法在求解非线性方程组时是有效的. we propose a strategy of self-adapting multi-point cross and random mutation under the frame of memetic algorithm to solve the nonlinear equations.we optimize the group of chromosome after both cross and mutation by quasi-newton local search strategy in order to improve the solution performance.Numerical experiments indicate that the memetic algorithm has a good effect on solving nonlinear equations.
作者 屈爱平
机构地区 怀化学院数学系
出处 《山东理工大学学报(自然科学版)》 CAS 2010年第4期42-44,48,共4页 Journal of Shandong University of Technology:Natural Science Edition
关键词 非线性方程组 拟牛顿法 MEMETIC算法 nonlinear equations quasi-newton method memetic algorithm
  • 相关文献

参考文献6

二级参考文献10

  • 1(德)[G,泽贝尔]Gunter Seeber著;赖锡安等译.卫星大地测量学[M].北京:地震出版社,1998..
  • 2吕凤翥.C++语言基础教程[M].北京:清华大学出版社,2000.201-205.
  • 3蔡大用 白峰杉.现代科学计算[M].北京:清华大学出版社,2001..
  • 4Kennedy J,Eberhart R.Particle swarm optimization[A].Proceedings of IEEE International Conference on Neural Networks(ICNN'95)[C].Perth,WA,Australia,1995,1942~1948.
  • 5Eberhart R,Kennedy J.A new optimizer using particle swarm theory[A].Proceedings of Sixth International Symposium on Micro Machine and Human Science[C].Nagoya,Japan:Nagoya Municipal Industrial Research Institute,1995,39~43.
  • 6Shi Yu-hui,Eberhart R.Parameter selection in particle swarm optimization[A].Proceedings of 7th Annual Conference on Evolutionary Programming[C].March 1998,591~601.
  • 7Ray T,Liew K M.A swarm with an effective information sharing mechanism for unconstrained and constrained single objective optimization problems[A].Proceedings of IEEE International Conference on Evolutionary Computation[C].South Korea:IEEE Press,Seoul,2001,75~80.
  • 8吴志远,邵惠鹤,吴新余.一种新的自适应遗传算法及其在多峰值函数优化中的应用[J].控制理论与应用,1999,16(1):127-129. 被引量:58
  • 9孔敏,沈祖和.解非线性方程组的极大熵方法[J].高等学校计算数学学报,1999,21(1):1-7. 被引量:13
  • 10曹先彬,郑振,范磊,王煦法.融合神经网络的一种改进遗传算法[J].模式识别与人工智能,1999,12(4):486-492. 被引量:13

共引文献54

同被引文献14

  • 1Nie P Y.A null space method for solving system of equations[J].Appl Math Computation,2004,149(1):215-226.
  • 2Nie P Y.An SQP approach with line search for a system of nonlinear equations[J].Math Comput Model,2006,43(3/4):368-373.
  • 3Grapsa T N,Vrahatis M N.New dimension-reducing method for solving systems of nonlinear equations[J].Int Jour Comput Math,1995,55(3/4):235-244.
  • 4Grosan C,Abraham A.A new approach for solving nonlinear equations systems[J].IEEE Transactions on Systems,Man,and Cybernetics-Part A:Systems and Humans,2008,38(3):698-714.
  • 5Denis J E.On Newton’s method and nonlinear simultaneous replacements[J].SIAM J Numer Anal,1967,4:103-108.
  • 6Grapsa T N,Vrahatis M N,Denis J E,et al.A trust-region algorithm for least-squares solutions of nonlinear systems of equalities and inequalities[J].SIAM J Opt,1999,9(2):291-315.
  • 7Broyden C G.A class of methods for solving nonlinear simultaneous equations[J].Math Comput,1965,19(92):577-593.
  • 8Denis J E,Wolkowicz H.Least change secant methods,sizing,and shifting[J].SIAM J Numer Anal,1993,30:1291-1314.
  • 9Deb K.A fast and elitist multiobjective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-187.
  • 10Leung Yiu-Wing,Wang Yuping.An orthogonal genetic algorithm with quantization for global numerical optimization[J].IEEE Trans on Evolutionary Computation,2001,5(1):41-53.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部