期刊文献+

N-methyl-D-aspartate receptor subunit 1 protein expression in the hippocampus and temporal cortex of kainic acid-induced epilepsy rats

N-methyl-D-aspartate receptor subunit 1 protein expression in the hippocampus and temporal cortex of kainic acid-induced epilepsy rats
下载PDF
导出
摘要 BACKGROUND: The N-methyl-D-aspartate receptor subunit 1 (NMDAR1) contributes to the incidence of epilepsy. However, the relationship between epilepsy-induced brain injury and NMDAR1 remains poorly understood. OBJECTIVE: To investigate changes in NMDAR1 protein expression in the hippocampus and temporal cortex of kainic acid-induced epilepsy rats. DESIGN, TIME AND SETFING: A randomized, controlled, animal experiment was performed at the Department of Physiology and Department of Pathology, Basic Medical College of Jilin University from March 2002 to March 2003. MATERIALS: Rabbit anti-NMDAR1 antibody was purchased from Wuhan Boster Biological Technology, China. METHODS: A total of 80 healthy, male, Wistar rats, aged 22 weeks, were randomly assigned to sham-surgery (n = 10) and model (n = 70) groups. Epilepsy models were established by injecting kainic acid (1μL) into the right amygdala, and rats were sacrificed at 2, 6, 24, 72 hours, and 7, 15, 30 days after surgery, with 10 animals at each time point. The rats in the sham-surgery group were injected with 1μL phosphate buffered saline into the right amygdala. MAIN OUTCOME MEASURES: NMDAR1 protein expression in the hippocampus and temporal cortex at 2, 6, 24, 72 hours and 7, 15, 30 days after epilepsy was detected using immunohistochemistry and flow cytometry analysis. RESULTS: In the sham-surgery group, a few NMDARl-positive cells were distributed in the hippocampus and temporal cortex. In the model group, NMDARl-positive cells were increased in the hippocampus and temporal cortex at 2 hours following kainic acid-induced epilepsy. They were significantly increased at 6 hours, and slightly decreased at 7 days (CA3 region and temporal cortex), but remained greater than the sham-surgery group. This continued until day 30 (P 〈 0.01 ). In addition, there were more NMDAR1 positive cells in the hippocampal CA3 and dentate gyrus than the temporal cortex (P 〈 0.01). CONCLUSION: In epilepsy model rats, NMDAR1 protein expression was upregulated in the hippocampus and temporal cortex, and in particular in the hippocampal CA3 and dentate gyrus. NMDAR1 may participate in epilepsy and the excitation process of the epileptic brain. BACKGROUND: The N-methyl-D-aspartate receptor subunit 1 (NMDAR1) contributes to the incidence of epilepsy. However, the relationship between epilepsy-induced brain injury and NMDAR1 remains poorly understood. OBJECTIVE: To investigate changes in NMDAR1 protein expression in the hippocampus and temporal cortex of kainic acid-induced epilepsy rats. DESIGN, TIME AND SETFING: A randomized, controlled, animal experiment was performed at the Department of Physiology and Department of Pathology, Basic Medical College of Jilin University from March 2002 to March 2003. MATERIALS: Rabbit anti-NMDAR1 antibody was purchased from Wuhan Boster Biological Technology, China. METHODS: A total of 80 healthy, male, Wistar rats, aged 22 weeks, were randomly assigned to sham-surgery (n = 10) and model (n = 70) groups. Epilepsy models were established by injecting kainic acid (1μL) into the right amygdala, and rats were sacrificed at 2, 6, 24, 72 hours, and 7, 15, 30 days after surgery, with 10 animals at each time point. The rats in the sham-surgery group were injected with 1μL phosphate buffered saline into the right amygdala. MAIN OUTCOME MEASURES: NMDAR1 protein expression in the hippocampus and temporal cortex at 2, 6, 24, 72 hours and 7, 15, 30 days after epilepsy was detected using immunohistochemistry and flow cytometry analysis. RESULTS: In the sham-surgery group, a few NMDARl-positive cells were distributed in the hippocampus and temporal cortex. In the model group, NMDARl-positive cells were increased in the hippocampus and temporal cortex at 2 hours following kainic acid-induced epilepsy. They were significantly increased at 6 hours, and slightly decreased at 7 days (CA3 region and temporal cortex), but remained greater than the sham-surgery group. This continued until day 30 (P 〈 0.01 ). In addition, there were more NMDAR1 positive cells in the hippocampal CA3 and dentate gyrus than the temporal cortex (P 〈 0.01). CONCLUSION: In epilepsy model rats, NMDAR1 protein expression was upregulated in the hippocampus and temporal cortex, and in particular in the hippocampal CA3 and dentate gyrus. NMDAR1 may participate in epilepsy and the excitation process of the epileptic brain.
出处 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第14期1045-1049,共5页 中国神经再生研究(英文版)
基金 the Science and Technology Development Program of Jilin Province,No.200705169
关键词 kainic acid EPILEPSY N-methyI-D-aspartate receptor RAT SUBUNIT neural regeneration kainic acid epilepsy N-methyI-D-aspartate receptor rat subunit neural regeneration
  • 相关文献

参考文献1

二级参考文献6

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部