期刊文献+

Electrical fields and the promotion of endogenous angiogenesis in a rat spinal cord injury model

Electrical fields and the promotion of endogenous angiogenesis in a rat spinal cord injury model
下载PDF
导出
摘要 BACKGROUND: Previous studies have shown that direct current electrical fields affect development and growth of human microvascular endothelial cells, but the role of electrical fields on promoting angiogenesis in tissues following spinal cord injury remains poorly understood. OBJECTIVE: To determine the effects of electrical fields on angiogenesis and spinal cord repair following traumatic spinal cord injury in rats. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Chongqing Key Laboratory of Neurology, Affiliated Hospital of Chongqing Medical University, China from September 2007 to August 2008. MATERIALS: Hydrogen blood flow detector (Soochow University Medical Instrument, China), Power Lab System (AD Instruments, Colorado Springs, CO, USA) and mouse anti-vascular endothelial growth factor (VEGF) monoclonal antibody (Sigma-Aldrich, St. Louis, MO, USA) were used in this study. METHODS: A total of 60 healthy, adult, Sprague Dawley rats were equally and randomly assigned to sham-surgery, model, and electrical field groups. The Allen's weight-drop method was used to induce complete spinal cord injury in the model and electrical field groups. Rats in the electrical field group were implanted with silver needles and electrical fields (350 V/m) were applied following traumatic injury. MAIN OUTCOME MEASURES: Latency of somatosensory-evoked potential was detected and spinal cord blood flow was measured by hydrogen blood flow detector. Microvascular density was determined by histological analysis. VEGF expression in the spinal cord was observed by immunohistochemical staining. RESULTS: Recovery of spinal cord blood flow was significantly increased in the electrical field group (at 1, 2, 4, 8, and 24 days after injury) compared with the model group (P 〈 0.05 or P 〈 0.01). Latency of P1 waves in somatosensory-evoked potential of electrical field group (at 1,2, 4, 8, and 24 days after injury) was significantly shorter than the model group (P 〈 0.05 or P 〈 0.01). Microvascular density and VEGF expression were greater in the electrical field group compared with the model group at 24 days after injury (P 〈 0.01). CONCLUSION: Electrical fields (350 V/m) promoted angiogenesis within injured rat tissue following spinal cord injury and improved spinal cord function. Electrical fields could help to ameliorate spinal cord injury. The mechanisms of action could be related to increased VEGF expression. BACKGROUND: Previous studies have shown that direct current electrical fields affect development and growth of human microvascular endothelial cells, but the role of electrical fields on promoting angiogenesis in tissues following spinal cord injury remains poorly understood. OBJECTIVE: To determine the effects of electrical fields on angiogenesis and spinal cord repair following traumatic spinal cord injury in rats. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Chongqing Key Laboratory of Neurology, Affiliated Hospital of Chongqing Medical University, China from September 2007 to August 2008. MATERIALS: Hydrogen blood flow detector (Soochow University Medical Instrument, China), Power Lab System (AD Instruments, Colorado Springs, CO, USA) and mouse anti-vascular endothelial growth factor (VEGF) monoclonal antibody (Sigma-Aldrich, St. Louis, MO, USA) were used in this study. METHODS: A total of 60 healthy, adult, Sprague Dawley rats were equally and randomly assigned to sham-surgery, model, and electrical field groups. The Allen's weight-drop method was used to induce complete spinal cord injury in the model and electrical field groups. Rats in the electrical field group were implanted with silver needles and electrical fields (350 V/m) were applied following traumatic injury. MAIN OUTCOME MEASURES: Latency of somatosensory-evoked potential was detected and spinal cord blood flow was measured by hydrogen blood flow detector. Microvascular density was determined by histological analysis. VEGF expression in the spinal cord was observed by immunohistochemical staining. RESULTS: Recovery of spinal cord blood flow was significantly increased in the electrical field group (at 1, 2, 4, 8, and 24 days after injury) compared with the model group (P 〈 0.05 or P 〈 0.01). Latency of P1 waves in somatosensory-evoked potential of electrical field group (at 1,2, 4, 8, and 24 days after injury) was significantly shorter than the model group (P 〈 0.05 or P 〈 0.01). Microvascular density and VEGF expression were greater in the electrical field group compared with the model group at 24 days after injury (P 〈 0.01). CONCLUSION: Electrical fields (350 V/m) promoted angiogenesis within injured rat tissue following spinal cord injury and improved spinal cord function. Electrical fields could help to ameliorate spinal cord injury. The mechanisms of action could be related to increased VEGF expression.
出处 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第14期1091-1095,共5页 中国神经再生研究(英文版)
基金 the National Natural Science Foundation of China,No.30300075 the Sichuan Science Fund for Outstanding Youths,No.05ZQ026-020 the China Postdoctoral Science Foundation Project,No.20080440996
关键词 ANGIOGENESIS electric fields spinal cord injury spinal cord blood flow vascular endothelial growth factor neural regeneration angiogenesis electric fields spinal cord injury spinal cord blood flow vascular endothelial growth factor neural regeneration
  • 相关文献

参考文献2

二级参考文献71

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部