期刊文献+

美式期权定价问题罚函数法的欧拉-拉格朗日分裂格式 被引量:1

The Eulerian-Lagrangian Splitting Scheme in the Penalty Method for Solving the American Option Pricing
下载PDF
导出
摘要 在求解多资产美式期权定价问题罚函数法的差分格式中首次引入欧拉-拉格朗日分裂技巧,使得在欧拉步中含罚函数项的方程可以准确求解,从而更好地解决了数值计算中期权值必须大于等于收益函数的问题.其次,在拉格朗日步中采用Crank-Nicholson格式,使得整体数值解的精度达到O(Δt2+h2).最后分别计算了单资产和多资产两个数值算例,数值结果均验证了新方法的有效性. In this paper, the Eulerian-Lagrangian splitting skill is firstly employed in the difference scheme of penalty method for solving American multi-asset option pricing. In the step of Euler, the equation which includes the penalty term can be solved analytically, which is helpful to overcome the difficulty in keeping the value of option be positive. In the step of Lagrange, the C- N scheme is used, which improves the accuracy to O(Δt2 + h2 ) . Two examples for both single- and multi-asset options are tested and the nu- merical results show the efficiency of the new method.
作者 刘焕文 黄聪
出处 《湘潭大学自然科学学报》 CAS CSCD 北大核心 2010年第2期1-6,共6页 Natural Science Journal of Xiangtan University
基金 国家自然科学基金项目(10962001) 广西省自然科学基金项目(2010GXNSFA013115) 湖南省科学与工程计算重点实验室项目
关键词 美式期权 多资产期权 罚函数法 American option multi-asset option penalty method
  • 相关文献

参考文献9

  • 1NIELSEN B F,SHAVHAUG O,TVEIT A.Penalty and front-fixing methods for the numerical solution of American option problems[J].The Journal of Computational Finance,2002,5(4):69-97.
  • 2NIELSEN B F,SHAVHAUG O,TVEITO A.Penalty methods for the numerical solution of American multi-asset option problems[J].Journal of Computational and Applied Mathematics,2008,222:3-16.
  • 3NIELSEN B F,SHAVHAUG O,TVEITO A.Penalty methods for the numerical solution of American multi-asset option problems[J].Journal of Computational and Applied Mathematics,2008,222:3-16.
  • 4FASSHAUER G E,KHALIQ A Q M,VOSS D A.Using meshfree approximation for multi-asset American option problems[J].Journal of the Chinese Instiute of Engineers,2004,27:563-571.
  • 5KHALIQ A Q M,VOSS D A,KAZMI K.Adaptive θ-methods for pricing American options[J].Journal of Computational and Applied Mathematics,2008,222:210-227.
  • 6WILMOTT P,DEWYNNE J,HOWISON S.Option Pricing,Mathematical Models and Computation[M].Oxford Financial Press,1993.
  • 7忻孝康 黄光伟.对流—扩散型方程的一种简单、有效的欧拉—拉格朗日分裂格式[J].空气动力学报,1986,4:65-72.
  • 8刘利斌,刘焕文,林丽烽.对流扩散方程的样条子域精细积分分步格式[J].福建农林大学学报(自然科学版),2009,38(1):103-107. 被引量:1
  • 9WU L,KWORK Y.A front-fixing finite difference method for valuation of American options[J].The Journal of Financial Engineering,1997,6(2):83-97.

二级参考文献8

共引文献1

同被引文献18

  • 1贺立新,张来平,张涵信.间断Galerkin有限元和有限体积混合计算方法研究[J].力学学报,2007,39(1):15-22. 被引量:28
  • 2Black F, Scholes M. The pricing of options and corporate liabilities. Journal of Political Economy, 1973, 81(3): 637-654.
  • 3Merton R C. Theory of rational option pricing. Bell Journal of Economic and Management, 1973, 4(1): 141-183.
  • 4Badea L, Wang J. A new formulation for the valuation of American options: Solution Uniqueness, in Analysis and Scientific Computing, Eun-Jae Park and Jongwoo Lee, eds, 2000.
  • 5Badea L, Wang J. A new formulation for the valuation of American options Ⅱ: Solution Existence, in Analysis and Scientific Computing, Eun-Jae Park and Jongwoo Lee, eds, 2000.
  • 6Gukhal C R. The compound option approach to American options on jump-diffusions. Journal of Economic Dynamics and Control, 2004, 28(10): 2055-2074.
  • 7Barone-Adesi G, Whaley R E. Efficient analytic approximation of American option value. Journal of Finance, 1987, 42(2): 301-320.
  • 8Khaliq A Q M, Voss D A, Kazmi, K. Adaptive 0-methods for pricing American options. Journal of Computational and Applied Mathematics, 2008, 222(1): 210-227.
  • 9Nielsen B F, Skavhaug O, Tveito A. Penalty methods for the numerical solution of American multi asset option problems. Journal of Computational and Applied Mathematics, 2008, 222(1): 3-16.
  • 10Allegretto W, Lin Y, Yang H. A novel approach to the evaluation of American options. Global Finance Journal, 2002, 13: 17-28.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部