期刊文献+

从管理风险的角度看金融风险度量 被引量:1

An Analysis of Financial Risk Measurement in Managing Risk
原文传递
导出
摘要 本文得出了连续时间下均值-VaR模型的最优投资策略。在这个最优解的基础上,我们比较说明了概率和分位数作为风险度量方法在管理风险中发挥的作用。我们的分析结果表明:从管理风险的角度出发控制损失发生的概率要比控制损失的水平更为有意义;并且选择的VaR置信度水平越高,监管的效果会越好。 We obtain the optimal dynamic trading strategy of the mean-VaR model in a continuous-time financial market.Based on the obtained solutions,we investigate the role of the probability and quantile risk measure for managing risk.Our results show that the investor can benefit more from controlling the loss probability than controlling the loss magnitude from the perspective of managing risk.We also find that the higher the confidence level,the better the VaR impact on risk regulation.
作者 姚京 李仲飞
出处 《数理统计与管理》 CSSCI 北大核心 2010年第4期736-742,共7页 Journal of Applied Statistics and Management
基金 上海市浦江人才计划 国家自然科学基金项目(70518001) 国家杰出青年科学基金项目(70825002)
关键词 风险度量 风险管理 VAR 破产概率 risk measure risk management Value-at-Risk ruin probability
  • 相关文献

参考文献7

  • 1Basak S, Shapiro A. Value-at-risk-based risk management: optimal policies and asset prices [J]. Review of Financial Studies, 2001, 14: 371-405.
  • 2Roy A. Safety-first and the holding of assets [J]. Econometrica, 1952, 20(3): 431-449.
  • 3Telser L. Safety first and hedging [J]. Review of Economic Studies, 1956, 23: 1-16.
  • 4Shefrin H, Statman M. Behavioral portfolio theory [J]. Journal of Financial and Quantitative Analysis, 2000, 35(2): 127-151.
  • 5Karatzas I, Lehoczky J P, Shreve S E. Optimal portfolio and consumption decisions for a 'small investor' on a finite horizon [J]. SIAM Journal of Control and Optimization, 1987, 25: 1557-1586.
  • 6Cox J C, Huang C. Optimal consumption and portfolio policies when asset prices follow a diffusion process [J]. Journal of Economic Theory, 1989, 49: 33-83.
  • 7Tversky A and Kahneman D. Advances in prospect theory: Cumulative representation of uncertainty [J]. Journal of Risk and Uncertainty, 1992, 5: 297-323.

同被引文献15

  • 1Bortkiewicz Lvon. Variationsbreite and Mittlerer Fehler, Sitzungsber[J]. Berli. Math. Ges. 1922, 21: 3-11.
  • 2Longin F M. The Asymptotic Distribution of Extreme Stock Market Returns[J]. Journal of Business. 1996, 69(3): 383-408.
  • 3Flivio angelini. An Analysis of Italian Financial Data using Extreme Value Theory. www.gloriamundi. org, 2000, 1.
  • 4Burridge Ho, P, Caddie Jet al. Value-at-Risk: Applying the Extreme Value Approach to Asian Markets in the Recent Financial Turmoil[J]. Pacific-Basin Finance Journal. 2000(8): 249-275.
  • 5Mandelbrot B. The Variation of Certain Speculative Prices[J]. Journal of Usiness, 1963, 36: 394-419.
  • 6Mandelbrot B. New Methods in Statistical Economics[J]. Journal of Political Economy, 1963, 71: 421-440.
  • 7DuMouchel W H. Estimating the Stable Index a in Order to Measure Tail Thichness: A Critique[J]. Annals of Statistics, 1983, 11: 1019-1031.
  • 8Pickands J. Statistical Inference using Extreme Value Order Statistics[J]. Annals of Statistics, 1975, 3: 119-131.
  • 9Balkema A. A., de Haan L. Residual Life Time at Great Age[J]. Ann Probab, 1974, 2: 792-804.
  • 10Greenwood, J. A. Probability Weighted Moments, Definition and Relation to Parameters of Distribution Expressible in Inverse form[J]. Wather Resour. Res. Landwehr, J. M., 1979, Matalas, W. C. 15: 1049-1054.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部