期刊文献+

基于蒙特卡洛模拟的城市轨道概率潮流分析 被引量:7

Probabilistic Load Flow for Urban Rail Traction Power Supply Based on Monte Carlo Simulation
下载PDF
导出
摘要 为探讨城市轨道牵引供电网络中潮流分布的不确定性,基于城市轨道交、直流统一的牵引供电算法,提出了一种基于蒙特卡洛模拟的城市轨道牵引供电系统概率潮流计算方法.该方法通过列车运行的时间-位置曲线构建列车位置的概率分布;根据行车组织建立发车间隔的概率分布;通过蒙特卡洛仿真,随机抽样确定列车在线路上的位置和功率分布;采用交、直流统一的潮流计算,获得城市轨道牵引供电系统节点电压和功率的概率分布.实例仿真表明,采用该方法,可准确把握牵引网网压、牵引变电所负荷等的概率统计特征. In order to research the uncertainty of urban rail traction load flow distribution,a Monte Carlo simulation method for the calculation of probabilistic load flow(PLF) was presented based on the unified AC/DC power flow algorithm.This method constitutes the probability distribution of train position from the position-time graph of train running.The probability distribution of departing time interval is obtained in light of the organization of train operation.With the Monte Carlo simulation,the positions and corresponding powers of trains can be achieved by random sampling.By unified calculation of AC/DC power flow,the probability distribution functions of node voltage and power can be attained.The examples shows that probabilistic statistical characteristics of traction network voltage and traction load of substation can be achieved with this method.
出处 《西南交通大学学报》 EI CSCD 北大核心 2010年第4期561-567,共7页 Journal of Southwest Jiaotong University
基金 铁道部重大课题(Z2006-04F) 国家电网公司重点课题(SGKJ[2007]102)
关键词 蒙特卡洛法 城市轨道 供电计算 概率潮流 Monte Carlo simulation urban rail transit power calculation probabilistic load flow
  • 相关文献

参考文献15

二级参考文献52

共引文献288

同被引文献51

  • 1刘学军,于松伟,刘学.轨道交通牵引供电仿真模型与算法的研究[J].计算机仿真,2004,21(12):213-218. 被引量:16
  • 2郑超 ,周孝信 ,李若梅 ,盛灿辉 .VSC-HVDC稳态特性与潮流算法的研究[J].中国电机工程学报,2005,25(6):1-5. 被引量:147
  • 3Shawn R Jeffery, Minos Garofalakis, Michael J Franklin. A- daptive cleaning for RFID data streams [C]. Proceeding of the 32nd International Conference on Very Large Data Bases, 2006: 163-174.
  • 4Nilesh Dalvi Dan Suciu. Efficient query evaluation on probabilis- tic databases [EB/OL]. http://www, google, com. hk/search.
  • 5Dalvi N, Suciu D. Efficient query evaluation on probabilisticda-tabases [C]. The 30th International Conference on Very LargeData Bases, 2004: 1-7.
  • 6XIANG Jianping, TANG Changjie, CHEN Yu, et al. CDA.. A novel clustering delegate algorithm based on minority protec- tion [C]. Tianjin: 6th International Conference on Fuzzy Sys- tems and Knowledge Discovery, 2009: 456-459.
  • 7QIAO Shaojie, TANG Changjie, JIN Huidong, et al. Put- Mode: Prediction of uncertain trajectories in moving objects da- tabases [J]. Applied Intelligence, 2009, doi: 10. 1007/ s10489-009 -0173-z.
  • 8QIAO Shaojie, LI Tianrui, PENG Jiilg, et ak Parallel sequential pattern mining of massive trajectory data [J]. International Journal of Computational Intelligence Systems, 2010, 3 (3): 343-356.
  • 9GB50157-2003.地铁设计规范[S].[S].,..
  • 10Eskesen S D,Tengborg P R,Kampmann J,ct al. Guidelines for tunnelling risk management: international lunneling asscia- tion,working group No. 2[ J]. Tunneling and Underground Space Icchnnlugy,2004.19(3) :217 - 237.

引证文献7

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部