期刊文献+

无机纳米杂化聚酰亚胺中电荷陷阱分布的测量 被引量:3

Measuring the distribution of charges trapped in a hybrid nano polyimide film
下载PDF
导出
摘要 为了研究纳米颗粒在聚酰亚胺材料中的作用,利用热激退极化电流方法测量了无机纳米杂化聚酰亚胺薄膜中电荷陷阱的分布.实验表明在495K左右,聚酰亚胺样品存在一个很宽的热激电流峰,估算了实验样品中电荷陷阱的能级分布在0.45~0.75eV.比较了经SiO2和Al2O3纳米杂化聚酰亚胺试样和原始聚酰亚胺试样的电荷陷阱分布情况,发现无机纳米掺杂物的加入明显使材料中的电荷陷阱密度增加.这可能是无机纳米复合聚酰亚胺薄膜耐电晕性能提高的原因之一.同时还发现,SiO2无机纳米复合聚酰亚胺的陷阱能级密度大于Al2O3无机纳米复合聚酰亚胺,说明在聚酰亚胺材料中,SiO2纳米颗粒比Al2O3更有效地引入电荷陷阱. In order to study the effects of inorganic nano-particles in polyimide(PI),its charge trap distribution was investigated by analyzing its thermally stimulated depolarization current(TSDC).A broad TSDC peak was observed around 459 K in PI.The charge trap levels were estimated to be in the range of 0.45 ~0.75 eV.The trap distributions of PI-SiO2 and PI-Al2O3 nano hybrid films were compared.It was found that inorganic nano-particles can increase trap intensity in a film and the trap intensity of PI-SiO2 is larger than that of PI-Al2O3.This shows that SiO2 induces charge traps more efficiently than Al2O3 particles.The trap levels may be trapping electrons coming from corona discharges and preventing the PI film from the corona.This is one possible reason for nano-hybrid PI films having the property of corona-resistance.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2010年第5期614-618,共5页 Journal of Harbin Engineering University
基金 国家重点基础研究发展计划(973计划)基金资助项目(2009CB724505)
关键词 空间电荷 电介质 纳米复合物 电荷陷阱 space charge dielectric nano-composite charge trap
  • 相关文献

参考文献10

  • 1MORTON K,RICHARD J.New high temperature polyimide insulation for partial discharge resistance in harsh environments[J].IEEE Electrical Insulation Magazine,1997,13(4):24-30.
  • 2汪佛池,律方成,徐志钮,张沛红.变频电机用聚酰亚胺薄膜电老化特性研究[J].高电压技术,2007,33(4):30-32. 被引量:24
  • 3刘立柱,高琳,宋玉侠,赵洪,雷清泉.偶联剂用量对聚酰亚胺杂化薄膜结构与性能的影响[J].功能材料,2008,39(5):814-816. 被引量:8
  • 4AHAMD Z,MARK J E.Polymide-Ceramic hybrid composites by the sol-gel route[J].Chem Mater,2001,13(10):3320-3330.
  • 5LIU W D,ZHU B K,ZHANG J.Preparation and dielectric properties of ploymide/silica nanocomposite films prepared from sol-gel and blending process[J].Polym Adv Technol,2007,18(7):522-528.
  • 6LEPOT N,VAN BAEL M K,VAN DEN RUL H,et al.Synthesis of platelet-shaped boehmite and γ-alumina nanopaticles via an aqueous route[J].Ceram Int,2008,34(8):1971-1974.
  • 7TANAKA T,KOZAKO T,FUSE N.Proposal of amulti-core model for polymer nanocomposite dielectrics[J].IEEE Trans Dielec lnsul,2005,12(4):669-681.
  • 8BISQUERT J,HALPERN V.Analysis by thermally stimulated currents of the frequency power-law domains of the dielectric loss[J].J Phys Appl Phys,2001,34:968-975.
  • 9MAR H A,SIMMONS J G.Determination of the energy distribution of interface traps in MIS systems using non-steadystate techniques I J].Solid State Electronics,1974,17(2):131-135.
  • 10张沛红,范勇,汪佛池,谢华,李刚,雷清泉.Conduction Current Characteristics and Carrier Mobility of Both Original and Corona-Resistant Polyimide Films[J].Chinese Physics Letters,2005,22(5):1253-1255. 被引量:9

二级参考文献53

共引文献35

同被引文献30

引证文献3

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部