期刊文献+

不动点集为P(2^m,2^m)∪P(2^m,2^m+1)的对合 被引量:5

Involutions with Fixed Point Set P(2^m,2^m)∪P(2^m,2^m+1)
下载PDF
导出
摘要 设(M,T)是一个带有光滑对合T的光滑闭流形,T在M上的不动点集为F={x︱T(x)=x,x∈M},则F为M闭子流形的不交并.证明了当F=P(2m,2m)∪P(2m,2m+1)(m≥3)时,有且只有下列两种情形对合(M,T)存在:(1)w(λ1)=(1+a+b)2m+2,w(λ2)=(1+c+d)2m+1;(2)w(λ1)=(1+a)(1+a+b),w(λ2)=1+c+d,其中:λ→F=λ1→P(2m,2m)∪λ2→P(2m,2m+1)是F在M中的法丛,且λ→F与λ1→P(2m,2m)不协边;a∈H1(P(2m,2m);Z2),b∈H2(P(2m,2m);Z2),c∈H1(P(2m,2m+1);Z2),d∈H2(P(2m,2m+1);Z2)是生成元. Let(M,T) be a smooth closed manifold with a smooth involution T whose fixed point set is F = { x ︱T(x) = x,x∈M},then F is the disjoint union of smooth closed submanifold of M.It has been proved that when F =P(2^m,2^m)∪P(2^m,2^m+1)(m≥3),(M,T) doesn't exist except in the following two cases:(1) w(λ1) =(1 + a + b) 2m+2,w(λ2) =(1 + c + d) 2m+1;(2) w(λ1) =(1 + a)(1 + a + b),w(λ2) = 1 + c + d,where λ→F = λ1→P(2^m,2^m) ∪λ2→P(2^m,2^m + 1) is the normal bundle to F in M,and λ→F is not bordant to λ1 → P(2^m,2^m),a ∈ H1(P(2^m,2^m);Z2),b ∈ H2(P(2^m,2^m);Z2),c∈H1(P(2^m,2^m + 1);Z2) and d∈H2(P(2^m,2^m + 1);Z2) are the generators.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2010年第4期588-594,共7页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:10971050) 河北省自然科学基金(批准号:103144) 河北省教育厅博士基金(批准号:201006) 河北师范大学博士基金(批准号:L2005B03) 河北师范大学一般科研项目基金(批准号:L2008Y01)
关键词 对合 不动点集 示性类 上协边类 involution fixed point set characteristic class cobordism class
  • 相关文献

参考文献10

  • 1Conner P E.Differentiable Periodic Maps[M].Lecture Notes in Math.2nd ed.Berlin:Springer,1979:738.
  • 2Stong R E.Involutions Fixing the Projective Spaces[J].Michigan Math J,1966,13(4):445-447.
  • 3Royster D C.Involutions Fixing the Disjoint Union of Two Projective Spaces[J].Indiana Univ Math J,1980,29:267-276.
  • 4刘秀贵.不动点集是Dold流形P(2m+1,2n+1)的对合[J].数学年刊(A辑),2002,23(6):779-788. 被引量:8
  • 5刘秀贵.不动点集是Dold流形P(2m,2n+1)的对合[J].四川大学学报(自然科学版),2003,40(5):795-797. 被引量:8
  • 6L(U) Zhi,LIU Xi-bo.Involutions Fixing the Disjoint Union of 3-Real Projective Space with Dold Manifold[J].Kodai Math J,2000,23(2):187-213.
  • 7丁雁鸿,赵彦,李珊珊.不动点集为P(2m,2l+1)∪P(2m,2n+1)的对合[J].数学学报(中文版),2008,51(5):971-978. 被引量:9
  • 8Kosniowski C,Stong R E.Involutions and Characteristic Numbers[J].Topology,1978,17(4):309-330.
  • 9Fujii M,Yasui T.KO-Cohomologies of Dold Manifold[J].Math J Okayama Univ,1973,16(1):55-84.
  • 10Stong R E.Vector Bundles over Dold Manifolds[J].Fundamenta Mathematicae,2001,169(1):85-95.

二级参考文献17

  • 1Conner P. E., Differentiable periodic maps (2nd ed), Lecture Notes in Math., 738, Berlin and New York: Spring, 1979.
  • 2Wu Z. D., Involutions fixing Dold manifold P(2m, 2n), Acta Mathematica Sinica, Chinese Series, 1988, 31(1): 72-82.
  • 3Liu X. G., Involutions fixing Dold manifold P(2m + 1, 2n + 1), Chinese Annals of Math., 2002, 6: 779-788.
  • 4Liu X. G., Involutions fixing Dold manifold P(2m, 2n + 1), Journal of Sichuan University (Natural Science Edition), 2003, 5: 795-797.
  • 5Kosniowski C., Stong R. E., Involutions and characteristic numbers, Topology, 1978, 17: 309-330.
  • 6Fujii M., Yasui T., KO-cohomologies of Dold manifold, Math. J. Okayama Univ., 1973, 16: 55-84.
  • 7Stong R. E., Vector bundles over Dold manifolds, Fundamenta Mathematicae, 2001, 169: 85-95.
  • 8Kosniowski C, String R E. Topology, 1978,17:309 - 330.
  • 9Lu Zhi, Liu Xi-Bo. Kodai Math J,2000,23:187 - 213.
  • 10Stovg R E. Fundamenta Mathematicae,2001,169:85 - 95.

共引文献9

同被引文献23

  • 1吴振德.不动点集为Dold流形P(2m,2n)的带有对合的流形[J].数学学报,1988,31(1):72-82.
  • 2CONNER P E. Differentiable Periodic Maps,Lecture Notes in Math [M] Berlin:Spring, 1979:738.
  • 3KOSNIOWSKI C, STONG R E. Involutions and Characteristic Numbers[J]. Topology, 1978,17:309-330.
  • 4FUJII M, YASUI T. KO-cohomologies of Dold Manifold, Math [J] J Okayama Univ, 1973,16: 55-84.
  • 5STONG R E. Vector Bundles over Dold Manifolds [J]. Fund Math,2001,169:85-95.
  • 6吴振德.不动点集为Dold流形P(2m,2n)的带有对合的流形[J].数学学报,1988,31(1):7282.
  • 7CONNER P E. Differentiable Periodic Maps, Lecture Notes in Math[ M]. Berlin : Spring, 1979.
  • 8KOSNIOWSKI C,STONG R E. Involutions and Characteristic Numbers[J]. Topology, 1978,17:309-330. doi: 10. 1016/ 0040-9383(78)90001-0.
  • 9FUJIII M, YASUI T. KO-cohomologies of Dold Manifold Math[J]. J Okayama Univ, 1973,16:55 84. doi: 10. 1016/0040 9383(78)90001 0.
  • 10STONG R E. Vector Bundles over Dold Manifolds[J]. Fund Math, 2001,169 : 85-95. doi: 10. 4064/fml 69-1-3.

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部