摘要
设(M,T)是一个带有光滑对合T的光滑闭流形,T在M上的不动点集为F={x︱T(x)=x,x∈M},则F为M闭子流形的不交并.证明了当F=P(2m,2m)∪P(2m,2m+1)(m≥3)时,有且只有下列两种情形对合(M,T)存在:(1)w(λ1)=(1+a+b)2m+2,w(λ2)=(1+c+d)2m+1;(2)w(λ1)=(1+a)(1+a+b),w(λ2)=1+c+d,其中:λ→F=λ1→P(2m,2m)∪λ2→P(2m,2m+1)是F在M中的法丛,且λ→F与λ1→P(2m,2m)不协边;a∈H1(P(2m,2m);Z2),b∈H2(P(2m,2m);Z2),c∈H1(P(2m,2m+1);Z2),d∈H2(P(2m,2m+1);Z2)是生成元.
Let(M,T) be a smooth closed manifold with a smooth involution T whose fixed point set is F = { x ︱T(x) = x,x∈M},then F is the disjoint union of smooth closed submanifold of M.It has been proved that when F =P(2^m,2^m)∪P(2^m,2^m+1)(m≥3),(M,T) doesn't exist except in the following two cases:(1) w(λ1) =(1 + a + b) 2m+2,w(λ2) =(1 + c + d) 2m+1;(2) w(λ1) =(1 + a)(1 + a + b),w(λ2) = 1 + c + d,where λ→F = λ1→P(2^m,2^m) ∪λ2→P(2^m,2^m + 1) is the normal bundle to F in M,and λ→F is not bordant to λ1 → P(2^m,2^m),a ∈ H1(P(2^m,2^m);Z2),b ∈ H2(P(2^m,2^m);Z2),c∈H1(P(2^m,2^m + 1);Z2) and d∈H2(P(2^m,2^m + 1);Z2) are the generators.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2010年第4期588-594,共7页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:10971050)
河北省自然科学基金(批准号:103144)
河北省教育厅博士基金(批准号:201006)
河北师范大学博士基金(批准号:L2005B03)
河北师范大学一般科研项目基金(批准号:L2008Y01)
关键词
对合
不动点集
示性类
上协边类
involution
fixed point set
characteristic class
cobordism class