期刊文献+

基于高斯混合模型的生物医学领域双语句子对齐 被引量:3

Sentence Alignment for Biomedicine Texts Based on Gaussian Mixture Model
下载PDF
导出
摘要 双语术语词典在生物医学跨语言检索系统中有着非常重要的地位,而双语句子对齐是构建双语词典的第一步工作。为了构想面向生物医学领域的双语词典,该文将分类思想和迁移学习方法引入汉英句子对齐任务中,将句子对齐任务看成一个多类分类任务,考虑生物医学领域双语摘要的锚信息,利用高斯混合模型完成分类目标。同时,在模型训练过程中,该文引入了迁移学习的思想,结合无噪音的《新概念英语》双语语料对模型的句子长度特征进行训练,使得模型在测试语料上句子对齐的正确率得到较大提高。 A bilingual lexicon of biomedical terms plays an important role in biomedical cross-language information retrieval.Sentence alignment is the first step to build a bilingual lexicon.The Gaussian mixture model and transfer learning are applied to align sentences.The basic idea is to consider the sentence alignment as a classification task,which can be solved by the Gaussian mixture model classifiers based on the anchor information included in medical literature abstracts.At the same time,the sentence alignment model is built by combining biomedicine literature abstracts with New Concept English corpora,and it aims at applying transfer learning to train the length features and transfer them to the model.The experiments show it improves the performance of the sentence alignment model.
出处 《中文信息学报》 CSCD 北大核心 2010年第4期68-73,共6页 Journal of Chinese Information Processing
基金 国家自然科学基金资助项目(60373095 60673039) 国家863高科技计划资助项目(2006AA01Z151) 教育部留学人员归国科研启动基金项目(教外司留[2007]118号) 国家社科基金资助项目(08BTQ025)
关键词 计算机应用 中文信息处理 句子对齐 高斯混合模型 迁移学习 锚信息 computer application Chinese information processing sentence alignment gaussian mixture model transfer learning anchor information
  • 相关文献

参考文献13

  • 1Gale W. F. , Church K. W.. A program for alignment sentences in bilingual corpora[J].Computational Linguistics, 1993,19(1) :75-102.
  • 2Brown P. F., Lai J. C., Mercer R. L.. Aligning sentences in parallel corpora[C]// Proceedings of the 29^th Annual Meeting of the Association for Computational Linguistics, Berkeley,CA, USA, 1991 : 169-176.
  • 3Thomas C. , Kevin C. Aligning parallel bilingual corpora statistically with punctuation criteria[J]. Computational Linguistics and Chinese Language Processing, 2005,10(1) :95-122.
  • 4Wu D. Aligning a parallel English-Chinese corpus statistically with lexical criteria[C]// Proceedings of the 32^th Annual Conference of the Association for Computational Linguistics. Las Cruces, NM, USA, 1994: 80-87.
  • 5张艳,柏冈秀纪.基于长度的扩展方法的汉英句子对齐[J].中文信息学报,2005,19(5):31-36. 被引量:24
  • 6Chen S. F.. Aligning sentences in bilingual corpora using lexical information[C]// Proceedings of the 31^th Annual Conference of the Association for Computational Linguistics, Columbus,USA, 1993: 9-16.
  • 7吕学强,吴宏林,姚天顺.无双语词典的英汉词对齐[J].计算机学报,2004,27(8):1036-1045. 被引量:11
  • 8Mohamed Abdel Fattah, David B. Bracewell, Fuji Ren. el al. Sentence alignment using P-NNT and GMM[J]. Computer Speech and Language, 2007,21 (4) :594-608.
  • 9J. Pan, J. Kwok, Q. Yang. Adaptive localization in a dynamic Wifi environment through mutil-view learning [C]// Proceedings of the 22nd conference on artificial intelligence (AAAI-07), Vancouve, Canada , 2007:1108-1113.
  • 10R. Raina, A Ng and D. Koller. Constructing informative priors using transfer learning[C]// Proceedings of the 23^th International Conference on Machine Learning ( ICML2006 ), Pittsburgh, USA, 2006: 713-720.

二级参考文献21

  • 1刘小虎,吴葳,李生,赵铁军,蔡萌,鞠英杰.基于词典和统计的语料库词汇级对齐算法[J].情报学报,1997,16(1):21-27. 被引量:8
  • 2Xu Dong-Hua. Aligning and matching of English-Chinese bilingual texts of CNS news. Department of Information System and Computer Science, National Univerisity of Singapore:Technical Report: cmp-lg/9608017, 1996
  • 3Brown P.F., Lai J.C., Mercer R.L. et al.. Aligning sentences in parallel corpora. In: Proceedings of the 29th Annual Meeting of the Association for Computational Linguistics, Berkeley, CA, 1991, 169~176
  • 4Gale W.A., Church K.W.. A program for aligning sentences in bilingual corpora. Computational Linguistics, 1993,19(1): 75~102
  • 5Kay M., Roscheisen M.. Text-translation alignment.Computational Linguistics, 1993, 19(1): 121~142
  • 6Chen S.F.. Aligning sentences in bilingual corpora using lexical information. In: Proceedings of the 31st Annual Meeting of the Association for Computational Linguistics, Columbus, OH, 1993, 9~16
  • 7Wu De-Kai. Aligning a parallel English-Chinese corpus statistically with lexical criteria. In: Proceedings of the 32th Annual Conference of the Association for Computational Linguistics, Las Cruces, NM, 1994, 80~87
  • 8Imamura K.. A hierarchical phrase alignment from English and Japanese bilingual text. In: Proceedings of the 2nd International Conference on Intelligent Text Processing and Computational Linguistics, Mexico, 2001, 206~207
  • 9Ker S.J.,Chang J.S.. A class-based approach to word alignment. Computational Linguistics, 1997, 23(2): 313~344
  • 10Borin L.. You'll take the high road and I'll take the low road: Using a third language to improve bilingual word alignment. In: Proceedings of the 18th International Conference of Computational Linguistics, Saarbrucken, Germany,2000, 97~103

共引文献31

同被引文献35

  • 1张艳,柏冈秀纪.基于长度的扩展方法的汉英句子对齐[J].中文信息学报,2005,19(5):31-36. 被引量:24
  • 2李维刚,刘挺,张宇,李生.基于长度和位置信息的双语句子对齐方法[J].哈尔滨工业大学学报,2006,38(5):689-692. 被引量:25
  • 3黄红梅,李鹏,赵济民.宇称模糊逻辑与自然语言理解[J].现代电子技术,2007,30(8):84-86. 被引量:1
  • 4Qian L H, Zhou G D. Dependency-directed tree ker- nel-based protein-protein interaction extraction from biomedical literature[C~//Proceedings of the 5th Inter- national Joint Conference on Natural Language Pro- cessing, Thailand ,2011: 10-19.
  • 5LiS S, Xue Y X, Wang Z Q and Zhou G D. Active learning for cross-domain sentiment classification[-C~// Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence. Beijing, China, 2013 ~ 2127-2133.
  • 6Sampo P, Antti A, Juho H, et al. Comparative analy- sis o:~ five protein-protein interaction corpora~J~. BMCBioinformatics, 2008, 9 : $6.
  • 7Miwa M, Saetre R, Miyao Y, et al. A rich feature vector for protein-protein interaction extraction from multiple corporaI-C]//Proceedings of the Association for Computational Linguistics, Singapore: World Sci- entific Publishing Co Pte Ltd. 2009: 121-130.
  • 8Wei F M, Zhang J P, Chu Y, et al. FSFP: Transfer Learning From Long Texts to the Short~J]. Applied Mathematics ~ Information Sciences, 2014, 8 (4): 2033-2040.
  • 9Yang P, Gao W, Tan Q, et al. A link-bridged topic model for cross-domain document classification[J']. Information Processing ~ Management, 2013, 49 (6) : 1181-1193.
  • 10Zhou H, Zhang Y, Huang D, et al. Semi-supervised Learning with Trans[er Learning[J]. Chinese Compu- tational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data. Springer Berlin Heidelberg, 2013: 109-119.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部