期刊文献+

基于线性组合预测和生物特征的人体肤色检测

Human Skin Detection Based on Combination of Forecasts and Skin Biological Features
下载PDF
导出
摘要 针对视频监控中基于肤色特征人体目标检测中的两个棘手问题,即人体肤色受光照变化影响较大,以及复杂背景下肤色相近色的干扰,提出了一种新的肤色检测方法。首先假设视频序列每帧肤色区域像素在彩色空间的分布构成相对集中的"点云"三维几何体,光照变化时每帧"点云"几何体在彩色空间的变化可以通过平移、缩放和旋转等参数约束下的三维仿射变换来建模,提出了用线性组合预测模型来预测这三类参数的变化,进而预测并更新待检测帧的直方图分布;然后利用Bayes分类器进行肤色区域的初分割。为了克服复杂背景中肤色相近色的干扰,本文采用组合彩色空间变换凸显人体肤色生物特征,减少了肤色和非肤色在单个彩色空间时的重叠区域,在初分割的基础上进一步消除大片相近色的干扰。经过大量实验证明,该方法在帧间光照变化的情况下对肤色变化有很好的敏感性,且能有效克服大片背景相近色的干扰。 Illuminanee variation and camouflage disturbance from the background are two intractable problems for human skin color detection in surveillance, a new method is proposed for detecting this problem. Firstly, it is hypothesized that skin pixels in each frame are compact together as a "dot cloud" in a color space ; the shape evolution of each frame of the "dot cloud" is parameterized as the translation, the scaling and the rotation; the combination of forecasts method is proposed to predict these arguments for the next frame being segmented, thus its histogram can be figured out. Then, Bayes classifier is used to obtain the primary skin patches. Finally. human skin biological features and the combination of color spaces are adopted to eliminate the interruption of the camouflage. Extensive tests prove its sensitivity to the human skin color, and it is robust to the mass camouflage perturbation from the background.
出处 《数据采集与处理》 CSCD 北大核心 2010年第4期454-461,共8页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(60641010)资助项目
关键词 人体肤色检测 线性组合预测 肤色生物特征 BAYES分类器 human skin detection linear combination of forecasts human biological feature Bayes classifier
  • 相关文献

参考文献26

  • 1Kakumanu P,Makrogiannis S,Bourbakis N.Asurvey of skin-color modeling and detection methods[J].Pattern Recognition,2007,40(3):1106-1122.
  • 2原春锋,王传旭,张祥光,刘云.光照突变环境下基于高斯混合模型和梯度信息的视频分割[J].中国图象图形学报,2007,12(11):2068-2072. 被引量:24
  • 3Haritaoglu I,Harwood D,Davis L S.W4:Real-time surveillance of people and their activities[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2005,22(7):809-830.
  • 4McKenna S,Jabri S,Duric Z,et al.Tracking groups of people[J].Computer Vision and Image Understanding,2004,80(1):42-56.
  • 5Barron J,Fleet D,Beauchemin S.Performance of optical flow techniques[J].International Journal of Computer Vision,2004,12(1):42-77.
  • 6陈锻生,刘政凯.肤色检测技术综述[J].计算机学报,2006,29(2):194-207. 被引量:118
  • 7Li Jiang,Yu Wenxian,Kuang Ganyao,et al.A compound face recognition system design[J].Journal of National University of Defense Technology,2005,25 (3):45-49.
  • 8Zhu Q,Cheng K,Wu C,et al.Adaptive learning of an accurate skin-color model[C]//Proc of 6th IEEE International Conference on Automatic Face and Gesture Recognition (FGR'04).USA:IEEE,2004:37-42.
  • 9Lu J,Gu Q,Plataniotis K.A comparative study of skin-color models[C]//Proc of the International Conference on Image Analysis and Recognition.Toronto.German:Springer,2005:729-736.
  • 10Stǒrring M.Computer vision and human skin colour[D].Computer Vision and Media Technology Laboratory,Aalborg University,Denmark,2004.

二级参考文献146

  • 1潘志庚,邹鹏程,梁荣华.基于特征人脸和肤色统计的人脸检测[J].系统仿真学报,2004,16(6):1346-1349. 被引量:14
  • 2张晓华,山世光,曹波,高文,周德龙,赵德斌.CAS-PEAL大规模中国人脸图像数据库及其基本评测介绍[J].计算机辅助设计与图形学学报,2005,17(1):9-17. 被引量:40
  • 3林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 4王泽兵,杨朝晖.彩色图像分割技术研究[J].电视技术,2005,29(4):20-24. 被引量:20
  • 5Finlayson G.D.,Hordley S.D.,Hubel P.M..Colour by correllation:A simple,unifying framework for colour constancy.IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(11):12097~1221.
  • 6Phung S.L.,Bouzerdoum A.,Chai D..Skin segmentation using color pixel classification:Analysis and comparison.IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(1):149~154.
  • 7Storring M..Computer vision and human skin colour[Ph.D.dissertation].Computer Vision and Media Technology Laboratory,Aalborg University,Denmark,2004,http://www.cvmt.dk/~mst.
  • 8Yang M.H.,Kriegman D.,Ahuja N..Detecting faces in images:A survey.IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(1):34~58.
  • 9Zhao W.,Chellapa R.,Philips P.J.,Rosenfeld A..Face recognition:Literature survey.ACM Computing Survey,2003,35(4):399~458.
  • 10Oliver N.,Pentland A.,Berard F..LAFTER:A real-time face and lips tracker with facial expression recognition.Pattern Recognition,2000,33:1369~1382.

共引文献199

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部