期刊文献+

基于视觉注意的目标预检测模型 被引量:2

Target Pre-detection Model Based on Visual Attention
下载PDF
导出
摘要 提出了一种从输入图像中提取一致性特征并将该特征融入视觉注意模型中的方法,它以Itti提出的视觉注意模型为基础,首先采用线性离散高斯滤波器对输入图像进行平滑和降采样,得到不同分辨率的子图像,建立输入图像的高斯金字塔结构。然后利用梯度结构张量计算各子图像的一致性并通过中央周边差操作得到一致性特征图,最后利用层间求和操作求得输入图像的一致性显著图引导注意。实验表明,在视觉注意模型的初级视觉特征提取阶段添加图像的一致性特征,能检测出Itti模型不能检测的一致性特征显著的感兴趣区域,而且能优先检测出具有特殊方向的目标。 A method for computing the coherence feature of the input image and adding it to the visual attention model is developed based on the visual attention model proposed by Laurent Itti. The method uses a linearly separable Gaussian filter to smooth and sub-sample the input im- age into maps with different resolution levels to obtain the pyramidal representation. Then, a gradient structure tensor is used to obtain the coherence features of each map at different scales. After that, center-surround receptive fields are simulated by across-scale subtraction yielding "coherence feature maps". Finally, the coherence feature map is summed up by using across-scale addition to form a "coherence conspicuity map" to guide visual attention. Experiments on different images show that after adding coherence feature into the Itti model, regions of interest with the strong coherence feature, which fails to be extracted by the original model, and targets with special orientation can be detected with high priority.
出处 《数据采集与处理》 CSCD 北大核心 2010年第4期469-473,共5页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(60971016)资助项目 重庆市自然科学基金(CSTC 2009BB2358)资助项目
关键词 视觉注意 结构张量 一致性 特征图 visual attention structure tensor coherence feature map
  • 相关文献

参考文献10

  • 1Koch C,Ullman S.Shifts in selective visual attention:towards the underlying neural circuity[J].Human Neurobiology,1985,4(4):219-227.
  • 2Nothdurft H C.Salience from feature contrast:temporal properties of saliency mechanism[J].Vision Research,2000,40(23):3181-3200.
  • 3Itti L,Koch C,Niebur E.A model of saliency-based visual-attention for rapid scene analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259.
  • 4Itti L,Koch C.Computational modeling of visual attention[J].Nature Neuroscience,2001,2(3):194-203.
  • 5Itti L.Quantifying the contribution of low level saliency to human eye movements in dynamic scenes[J].Visual Cognition,2005,12(6):1093-1123.
  • 6Walther D,Koch C.Modeling attention to salient pro-objects[J].Neural Networks,2006,19(9):1395-1407.
  • 7Weickert J.Coherence-enhancing diffusion filtering[J].International Journal of Computer Vision,1999,31(2):111-127.
  • 8Weickert J.Coherence-enhancing diffusion of colour images[J].Image and Vision Computing,1999,17(3):201-212.
  • 9Itti L.Models of bottom-up and top-down visual attention[D].California:California Institute of Technology,2000.
  • 10Walther D.Interactions of visual attention and object recognition:computation modeling,algorithms,and psychophysics[D].California:California Institute of Technology,2006.

同被引文献30

  • 1汪东,吕绪良,许卫东,潘玉龙,林伟.基于灰度直方图分析技术的伪装应用模型[J].解放军理工大学学报(自然科学版),2004,5(3):74-77. 被引量:18
  • 2S Satoh, S Miyake. A model of overt visual attention based on scale -space theory [ J ]. Systems and Computers in Japan, 2004,35 (10) :1-13.
  • 3L Itti. Models of bottom-up attention and saliency[C]. Neurohiol- ogy of Attention. San Diego, CA :EI-sevier, 2005:576-582.
  • 4J J Bonauto, L hti. Combining attention and recognition for rapid scene analysis[ C]. Proceeding of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Reeognition, 2005.
  • 5R J Peters, L Itti. Beyond bottom-up : incorporating task-de- pendent in flueneies into a computational model of spatial attention [ C ]. IEEE Conference on Computer Vision and pattern Recogni- tion, 2007.
  • 6C Koch, S Ullman. Shifts in Selective Visual Attention: Towards the Underlying Neural Circuity [ J ]. Human Neurobiology, 1985, (4) : 219-227.
  • 7Laurent Itti, Christ of Koch, Ernst Niebur. A model of saliency- based visual attention for rapid scene analysis [ J]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 1998,20 (11) :1254-1259.
  • 8Lltti. Models of Bottom-Up and Top-Down Visual Attention[ D]. California: California Institute of Technology, 2000.
  • 9陈媛嫒.图像显著区域提取及其在图像检索中的应用[D].上海:上海交通大学,2007.
  • 10Toet A.Computational versus psychophysical image saliency:A comparative evaluation study[J].IEEETransactions on Pattern Analysis and Machine Intelligence,2011,33(11):2131-2146.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部