期刊文献+

一种新的QR-SIC-MSD联合MIMO信号检测算法 被引量:5

New QR-SIC-MSD Joint MIMO Signal Detection Algorithm
下载PDF
导出
摘要 针对MIMO信号检测中球形译码(Sphere decoding,SD)算法在低信噪比时接近最大似然(Maximum likelihood,ML)算法复杂度的缺点,提出了一种基于QR分解的串行干扰抵消(Successive interference cancellation,SIC)和修改的球形译码(Modified sphere decoding,MSD)联合MIMO信号检测算法,称之为QR-SIC-MSD算法。该算法在低信噪比时采用SIC算法,在高信噪比时,采用MSD算法,根据噪声方差仅选择一次初始搜索半径,若搜索失败则用SIC解代替。通过SIC算法与MSD算法的结合,大大地降低了球形译码算法的复杂性,同时保证了在中高信噪比时逼近ML算法性能,在低信噪比时接近ML算法性能。文中同时给出了完整的算法流程图及计算机仿真结果。 SD algorithm for MIMO signal detection approaches the computational complexity of ML algorithm. To overcome the shortcoming, a successive interference cancellation and sphere decoding joint detection algorithm, called the QR-SIC-MSD algorithm, is proposed based on QR decomposition. The algorithm adopts SIC algorithm when the SNR is low and MSD algorithm when the SNR is high. MSD algorithm selects the initial searching radius only once, and SIC solution replaces MSD algorithm if the searching is failed. The combination of SIC algorithm and MSD algorithm reduces the computational complexity. Meanwhile, the performance approaches ML algorithm in middle and high SNR and is close to ML algorithm in low SNR. This paper also provides the whole algorithm flow chart and the computer simulation results.
作者 赵飞 王炎
出处 《数据采集与处理》 CSCD 北大核心 2010年第4期500-504,共5页 Journal of Data Acquisition and Processing
基金 国家高技术研究发展计划("八六三"计划)(2006AA01Z268)资助项目
关键词 QR分解 串行干扰抵消 MIMO信号检测 球形译码 QR—SIC—MSD算法 QR decomposition successive interference cancellation MIMO signal detection sphere decoding QR-SIC-MSD algorithm
  • 相关文献

参考文献9

  • 1Foschini G J,Gans M J.On limits of wireless communications in a fading environment when using multiple antennas[J].Wireless Personal Communications,1998,6(3):311-335.
  • 2Wolniansky P W,Foschini G J,Golden G D,et al.V-BLAST:An architecture for realizing very high data rates over the rich-scattering wireless channel[C]//URSI International Symposium on Signals,Systems,and Electronics (ISSSE98).Pisa,Italy:IEEE,1998:295-300.
  • 3Damen M O,Abed-Meraim K,Lemdani M S.Further results on the sphere decoder[C]//Proc IEEE Int Symp Information Theory.Washington D C:IEEE,2001:333.
  • 4Pohst M.On the computation of lattice vectors of minimal length,successive minima and reduced bases with applications[J].ACM SIGSAM Bull,1981,15:37-44.
  • 5Viterbo E,Boutros J.A universal lattice code decoder for fading channel[J].IEEE Trans Inform Theory,1999,45(5):1639-1642.
  • 6Hassibi B,Vikalo H.On the expected complexity of sphere decoding[C]//The Thirty-Fifth Asilomar Conference on Signal Systems and Computers.Pacific Grove,CA:IEEE,2001:1051-1055.
  • 7Foschini G J.Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas[J].Bell Laboratories Technical Journal,1996,1(2):41-59.
  • 8Damen M O,Gamal H E,Caire G.On maximum-likelihood detection and the search for the closet lattice point[J].IEEE Trans Inform Theory,2003,49(10):2389-2401.
  • 9Vikalo H,Hassibi B.On the sphere decoding algorithm I:expected complexity[J].IEEE Trans Signal Process,2005,53(8):2806-2818.

同被引文献37

  • 1杨大成.移动传播环境[M].北京:机械工业出版社,2003..
  • 2Choi W J,Nei R,Cioffi J M. Combined ML and DFE de- coding for the V-BLAST system [ C ]//IEEE ICC, 2000 : 1243-1248.
  • 3Hung C Y, Chung W H. An improved MMSE-based MI- MO detection using low-complexity constellation search [ C ]//IEEE Globecom Workshops, 2010 : 746-750.
  • 4Chen W B, Zhang X P, Li W. Reduced complexity ML detection algorithm for V-BLAST architectures [ C ]//A- sia-Pacific Conference on Computational Intelligence and Industrial Applications ,2009 : 190-193.
  • 5Koike C, Ogawa D, Seyama T, et al. MLD-based MU-MIMO Detec- tion Scheme for LTE Downlink [ C ]. Vehicular Technology Conference ( VTC Spring), iEEE 2012,75 : 1 - 5.
  • 6Yang Yu-Han, Lin Shih-Chun,Su Hsuan-Jung. Multiuser MIMO Downlink Beamforming Design Based on Group Maximum SINR Filtering[J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1746-1758.
  • 7Christos Masouros,Mathini Sellathurai, Tharmalingam Ratnarajah. Interference Optimization for Transmit Power Reduction in Tomlison-Harashima Precoded MIMO Downlinks[ J]. IEEE Transactions on Signal Processing, 2012, 60(5) : 2470-2481.
  • 8Chen Sun, Nemai C Karmakar, Khoon Seong Lira, et al. Combining beamforming with Alamouti scheme for multiuser MIMO communications [ C ]//Vehicular Technology Conference. 2004 : 1415-1419.
  • 9Alamouti S M. A simple transmit diversity technique for wireless communications [ J]. IEEE Sel. Areas Commun, 1998, 16 (8) : 1451-1458.
  • 10Golub G I-I, Van L C F. Matrix Computation [ M ]. Baltimore, MD: the John Hopkins Univ Press, 1996.

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部