期刊文献+

基于改进高斯核函数的雷达高分辨距离像目标识别算法研究 被引量:1

Target Recognition Algorithm of Radar High Resolution Range Profile Based on Improved Gaussian Kernel Function
下载PDF
导出
摘要 针对支持向量机的核函数选择问题,在保形变换方法的基础上,分析了确定数据分布特征的重要性,给出了判断数据呈高斯分布的方法。利用支持向量机的高斯核函数,提出一种基于改进的高斯核函数雷达目标高分辨距离像的研究方法。该方法对SVM的高斯核函数进行改进,并进行核函数选择。通过改进的高斯核函数与多项式核函数进行比较,在Matlab环境下采用两种方法对高分辨距离像进行仿真,仿真方法验证并改进了高斯核函数的有效性。 Aiming at kernel function selection of support vector machine(SVM) ,the method to determine Gaussian distribution of the data is introduced by analyzing feature of data distribution based on the proposed conformal transformation method.A target recognition algorithm of radar high resolution range profile based on improved Gaussian kernel function is proposed by using Gaussian kernel function of support vector machine.The method improved SVM Gaussian kernel function and carried out the kernel function selection.Through comparing the improved Gaussian kernel function with the polynomial kernel functions,two methods are used to simulate high resolution range profile in the Matlab environment,the simulation method validate the effectiveness of Gaussian kernel function.
出处 《现代电子技术》 2010年第15期1-4,共4页 Modern Electronics Technique
基金 中国航天科技集团公司航天科技创新基金(CASC200902)资助项目 陕西省自然科学基金(2007F23)
关键词 高分辨距离像 支持向量机 高斯核函数 广义高斯分布 high range resolution profile SVM Gaussian kernel function generalized Gaussian distribution
  • 相关文献

参考文献10

  • 1VAPNIK V. The essence of computational learning theory[M].张学工,译.北京:清华大学出版社,2000.
  • 2BURGES J C. A tutorial on support vector machines for pattern recognition [ M]. Kluwer Academic Publishers, Boston, 1999.
  • 3WANG W J, XU Z B, LU W Z, et al. Determination of the spread parameter in the Gaussian kernel for classification and regression [J]. Neurocomputing, 2003, 55 (3-4): 643-663.
  • 4DUAN K B, KEETHI S, POO A N. Evaluation of simple performance measure for tuning SVM hyperparameters[J]. Neurocomputing, 2003(51): 41-59.
  • 5CHERKASSKY V, MAY Q. Practical selection of SVM parameters and noise estimation for SVM regression [J ]. Neural Networks, 2004, 17: 113-126,.
  • 6GOLDA C, SOLLICHB P. Modle selection for support vector machine classification[J]. Neurocomputing, 2003 (55) : 221-249.
  • 7GAVIN C, NICOLA T. Efficient leave-one-out cross-validtion of kernel fisher discriminant classifiers [J]. Pattern Recognition, 2003(11): 2585-2592.
  • 8AMARIS S, WU S. Improving support vector machine classifiers by modifying kernel functionsEJ-. Neural Networks, 1999(12) : 783-789.
  • 9CRISTIANINI N, SHAWE-TAYLOR J. An introduction to support vector machines and other kernel-based learning methods [M]. Cambridge: Cambridge University Press, 2000.
  • 10BURGES C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998,2(2).. 121-167.

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部