期刊文献+

基于超声测距特征提取的移动机器人EKF SLAM研究

Research on Mobile Robot EKF SLAM Based on Ultrasonic Range Finding Feature Extraction
下载PDF
导出
摘要 根据超声测距传感器的测量特点,提出了适于室内环境的直线多次测量模型。先判断出结构化特征类型,再计算得出特征位置参数,即用超声测距传感器同时获得了距离和方位测量。使用Matlab软件编写程序代码,对基于超声测距特征提取的移动机器人EKFSLAM进行仿真验证,最后给出仿真验证结果。 Considering the characteristics of ultrasonic range finding sensor,a line model based on many measurements was presented which was applicable to indoor circumstance.The type of structural features was estimated,and the position parameters of features were obtained through calculating.Both range and bearing measurements were realized by ultrasonic range finding sensor at the same time.Through the program utilizing Matlab,the mobile robot EKFSLAM based on ultrasonic range finding feature extraction was simulated and verified,and the results of simulation were given.
出处 《光机电信息》 2010年第7期40-44,共5页 OME Information
关键词 SLAM EKF 特征提取 MATLAB仿真 SLAM EKF feature extraction Matlab simulation
  • 相关文献

参考文献1

二级参考文献25

  • 1[1]Smith R, Self M, Chesseman P. Estimating uncertain spatial relationships in robotics[A]. Proceedings of Conference on Uncertainty in Artificial Intelligence[C]. Amsterdam: North-Holland, 1988. 435-461.
  • 2[2]Csorba M. Simultaneous Localization and Map Building[D]. Oxford: University of Oxford, 1997.
  • 3[3]Dissanayake G, Newman P M, et al. A solution to the simultaneous localization and map building (SLAM) problem[J]. IEEE Transactions on Robotics and Automation, 2001, 17(3): 229-241.
  • 4[4]Leonard J J, Durrant-Whyte F. Simultaneous map building and localization for an autonomous mobile robot[A]. Proceedings of the IEEE International workshop on Intelligent Robots and Systems[C]. Osaka, Japan: 1991. 1442-1447.
  • 5[5]Leonard J J, Feder H J S. A computationally efficient method for large-scale concurrent mapping and localization[A]. Proceedings of the Ninth International Symposium on Robotics Research[C]. London: Springer-Verlag, 1999. 316-321.
  • 6[6]Guivant J, Nebot E, Baiker S. Autonomous navigation and map building using laser range sensors in outdoor applications[J]. Journal of Robotic Systems, 2000, 17 (10): 565-583.
  • 7[7]Wan E, Merwe R. The unscented Kalman-filter for nonlinear estimation[A]. Proceedings of the IEEE Symposium on Adaptive Systems for Signal Processing[C]. Alberta, Canada: 2000. 153-158.
  • 8[8]Castellanos J A, Tardos J D, Schmidt G. Building a global map of the environment of a robot: the importance of correlations[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. 1997.1053-1059.
  • 9[9]Leonard J, Feder H J S. Decoupled stochastic mapping[J]. IEEE Journal of Oceanic Engineer, 2001,26(4): 561-571.
  • 10[10]Williams S B. Efficient Solutions to Autonomous Mapping and Navigation Problems[D]. Sydney: University of Sydney, 2001.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部