期刊文献+

基于观测器的不确定T-S模糊系统鲁棒镇定 被引量:3

Observer-based robust stabilization of uncertain T-S fuzzy systems
下载PDF
导出
摘要 为带有参数不确定性的T-S模糊控制系统提出了新的基于观测器的鲁棒输出镇定条件.该条件用来设计模糊控制器和模糊观测器.为了设计模糊控制器和模糊观测器,用T-S模糊模型来表示非线性系统,并运用平行分布补偿观念.充分条件基于二次Lyapunov函数,通过将模糊系统的鲁棒镇定条件表述为一系列矩阵不等式,比以往文献中列出的条件具有更小的保守性.该不等式为双线性矩阵不等式,可分两步骤先后解得使T-S模糊系统镇定的控制器增益和观测器增益.最后,通过对一个具有不确定性的连续时间非线性系统控制的例子证明了提出方法比以往方法更宽松. This paper proposes new observer-based output robust stabilization conditions for Takagi-Sugeno(T-S) fuzzy control systems with parametric uncertainties.They are applied to design problems of fuzzy controllers and fuzzy observers.To design fuzzy controller and fuzzy observers,nonlinear systems are represented by T-S fuzzy models and the concept of parallel distributed compensation is employed.The sufficient condition is based on the quadratic Lyapunov function and is less conservative than some conditions published recently in the literature by describing the robust stabilization condition through a set of matrix inequalities.The sufficient condition is formulated in the format of bilinear matrix inequalities;one can obtain successively the controller gains and observer gains of T-S fuzzy control system with parametric uncertainties using two-step procedure.Finally,it is successfully demonstrated that the proposed approach is a more relaxed condition than others in the control of a continuous-time nonlinear uncertain system.
作者 齐丽 杨俊友
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2010年第5期627-630,共4页 Control Theory & Applications
基金 国家自然科学基金资助项目(50375102)
关键词 T-S模糊系统 参数不确定性 鲁棒镇定 双线性矩阵不等式 T-S fuzzy system parametric uncertainty robust stabilization bilinear matrix inequality(BMI)
  • 相关文献

参考文献13

  • 1TANAKA K, IKEDA T, WANG O. Fuzzy regulator and fuzzy observer: relaxed stability conditions and LMI based design[J]. IEEE Transactions on Fuzzy Systems, 1998, 6(2): 250- 256.
  • 2KIM E, LEE H. New approaches to relaxed quadratic stability condition of fuzzy control systems[J]. IEEE Transactions on Fuzzy systems, 2000, 8(5): 523 - 534.
  • 3LIU X D, ZHANG Q L. New approach to H∞ controller designs based on fuzzy observer for T-S fuzzy systems via LMI[J]. Automatica, 2003, 39(5): 1571 - 1582.
  • 4FANG C H, LIU Y S, KAU S W, et al. A new LMl-based approach to relaxed quadratic stabilization of T-S fuzzy control systems[J]. IEEE Transactions on Fuzzy Systems, 2006, 14(3): 386 - 397.
  • 5WANG H O, TANAKA K, GRIFFIN M F. An approach to fuzzy control of nonlinear systems: Stability and design issues[J]. IEEE Transactions on Fuzzy Systems, 1996, 4(1): 14 - 23.
  • 6JOH J, CHEN Y H, LANGARI R. On the stability issues of linear Takagi-Sugeno fuzzy models[J]. IEEE Transactions on Fuzzy Systems, 1998, 6(3): 402- 410.
  • 7WANG W J, SUN C S. Relaxed stability condition for T-S fuzzy systems[C]//Proceedings of 9th IFSA World Congress, Vancouver, BC: [s.n.], 2001, 1: 221- 226.
  • 8LEE H J, PARK J B, CHEN G. Robust fuzzy control of nonlinear systems with parametric uncertainties[J]. IEEE Transactions on Fuzzy Systems, 2001, 9(2): 369 - 379.
  • 9CHADLI M, HAJJAJI A. Output robust stabilization of uncertain Takagi-Sugeno model[C] //Proceedings of the 44rd IEEE Conference on Decision and Control, and the European Control Conference 2005. Seville, Spain: [s.n.], 2005:3393 - 3398.
  • 10CHADLI M, HAJJAJI A. Comment on "Observer-based robust fuzzy control of nonlinear systems with parametric uncertainties" [J]. Fuzzy Sets and Systems, 2006, 157(9): 1276 - 1281.

同被引文献29

  • 1TAKAGI T, SUGENO M. Fuzzy identification of systems and its applications to modeling and control[J]. IEEE Transactions on Systems, Man and Cybernrtics, 1985, 15(1): 116 - 132.
  • 2NGUANG S K, SHI E Fuzzy output feedback control design for nonlinear systems: An LMI approach[J]. IEEE Transactions on Fuzzy Systems, 2003, 11(3): 331- 340.
  • 3TONG S C, LI H H. Observer-based robust fuzzy control of nonlinear systems with parametric uncertainties[J]. Fuzzy Sets and Systems, 2002, 131(2): 165- 184.
  • 4YONEYAMA J. H∞ filtering for fuzzy systems with immeasurable premise variable: An uncertain system approach [J]. Fuzzy Sets and Systems, 2009, 160(12): 1738 - 1748.
  • 5YONEYAMA J. H∞ output feedback control for fuzzy systems with immeasurable premise variables: Discrete-time case[J]. Applied Soft Computing, 2008, 8(2): 949 - 958.
  • 6PARK C W, CHO Y W. T-S model based indirect adaptive fuzzy control using online parameter estimation[J]. IEEE Transactions on Systems, Man and Cybernetics, Part B, Cybernetics, 2004, 34(6): 2293 - 2302.
  • 7MARINO R, SANTOSUOSSO G L, TOMEI P. Robust adaptive observers for nonlinear systems with bounded disturbances[J]. IEEE Transactions on Automatic Control, 2001, 45(6): 967 - 972.
  • 8JONGCHUL J, KUNSOO H, FATHY H K, et al. Optimal robust adaptive observer design for a class of nonlinear systems via an approach[C]//Proceedigngs of the American Control Conference. New York: IEEE, 2006:3637 - 3642.
  • 9ZHANG Q H. Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems[J]. IEEE Transactions on Automatic Control, 2004, 47(3): 525 - 529.
  • 10XU A P, ZHANG Q H. Nonlinear system fault diagnosis based on adaptive estimation[J]. Automatica, 2004, 40(7): 1181 - 1193.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部