期刊文献+

代数等式系有穷公理化的一个扩充定理 被引量:3

An Extension Theorem on Finitely Axiomatizable Algebraic Equation Systems
下载PDF
导出
摘要 首先介绍两个概念:主同余类的弱可定义性以及次直不可分解类的可定义性.证明了任一有穷代数A,若V(A)具有弱可定义的主同余类以及可定义次直不可分解类,则它的等式系是可以有穷公理化的.进一步的讨论揭示出其结果是新的,是对已有工作的有意义的扩充. First, the two notions: weakly definable principal congruence and definable subdirectly irreducible class are introduced in this paper. The authors prove that if a variety generated by a finite algebra has both weakly definable principal congruence and definable subdirectly irreducible class, its equational system is finitely axiomatizable. Further discussion shows that the results are new, and are significant generalization of the known results.
作者 王驹 赵希顺
出处 《软件学报》 EI CSCD 北大核心 1999年第3期332-335,共4页 Journal of Software
基金 国家自然科学基金 国家863高科技项目基金
关键词 主同余类 计算机理论 代数等式系 有穷公理化 Equational system, principal congruence, subdirectly irreducible class.
  • 相关文献

同被引文献32

  • 1罗从文.伪补MS代数的主同余关系[J].应用数学,2004,17(4):661-664. 被引量:11
  • 2Burris S, Sankappanavar H P. A course in universal algebra[M]. New York: Springer Verlag, 1981 : 276.
  • 3Baker K A. Finite equational bases for algebras in a congruence - distributive equational class [ J ]. Advances in Math, 1977, 24 (3) : 207 - 243.
  • 4Mekenzie R. Para -primal varieties: a study of finite axiomatizability and definable principal congruences in locally finite varieties[J], Algebra Univensalis, 1978, 8(1) : 336 -348.
  • 5Willard R. Extending Baker' s theorem[ J ]. Algebra Universalis, 2001,45 (2/3) : 335 - 344.
  • 6Baker K A, McNulty G F, Wang J. An extension of Willard finite basis theorem: conguence meet - semidistributive varieties of finite critical depth [ J ]. Algebra Universalis, 2004, 52 (2/3) : 289 - 302.
  • 7Baker K A, Wang J. Definable principal subcongruences[J]. Algebra Universalis, 2002, 47(2) : 145 -151.
  • 8Burris S,Sankappanavar H P.A Course in Universal Algebra[M].New York:Springer-Verlag,1981:38-256.
  • 9Gratzer G.Universal Algebra[M].New York:Springer-Verlag,1979:1-350.
  • 10Sankappanavar H P.Principal congruences on psdudo-complemented on Morgan algebras[J].Proc Am Math Soc,1987,33:3-11.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部