摘要
首先介绍两个概念:主同余类的弱可定义性以及次直不可分解类的可定义性.证明了任一有穷代数A,若V(A)具有弱可定义的主同余类以及可定义次直不可分解类,则它的等式系是可以有穷公理化的.进一步的讨论揭示出其结果是新的,是对已有工作的有意义的扩充.
First, the two notions: weakly definable principal congruence and definable subdirectly irreducible class are introduced in this paper. The authors prove that if a variety generated by a finite algebra has both weakly definable principal congruence and definable subdirectly irreducible class, its equational system is finitely axiomatizable. Further discussion shows that the results are new, and are significant generalization of the known results.
出处
《软件学报》
EI
CSCD
北大核心
1999年第3期332-335,共4页
Journal of Software
基金
国家自然科学基金
国家863高科技项目基金
关键词
主同余类
计算机理论
代数等式系
有穷公理化
Equational system, principal congruence, subdirectly irreducible class.