期刊文献+

面向普通话辅音检测的区别特征参数测量 被引量:2

Distinctive parameter survey of mandarin consonants for speech evaluation
下载PDF
导出
摘要 以建立基于特征参数的解析化的普通话辅音发音检测方法为应用目的。根据普通话辅音按发音方式和发音部位分类的特点并结合区别特征理论的二元对立思想,首先提取分析了普通话21个辅音的美尔倒谱系数MFCC和美尔滤波器能量这两类特征,并进一步得到能区别发音方式或发音部位的区别性特征参数k1~k11。在此基础上构建了面向普通话辅音检测的二元分类决策树。与基于HTK的分类结果比较表明:使用基于区别性特征参数的决策树判决的方法对辅音进行分类检测和识别的结果比较稳定,准确率大多在80%以上且有更好的鲁棒性。 This paper is aimed at build a mandarin consonants recognition system based on distinctive parameters.Ac-cording to the classification method of consonants based on articulatory position and manner in combination with bi-nary opposition of distinctive features theory,the two types of features: Mel frequency cepstrum coefficients(MFCC) and Mel-filter energy are analyzed,and then distinctive parameters k1~k11corresponding to articulatory position and manner are further derived.A decision tree based on these parameters is built for classification of consonants.The con-sonants can be recognized by a binary search process from the decision tree.The comparison with HTK results shows that the recognition accuracy of most mandarin consonants based on distinctive parameters is over 80% and has a bet-ter robustness.
出处 《声学技术》 CSCD 2010年第3期297-305,共9页 Technical Acoustics
关键词 普通话 辅音 区别特征参数 语音检测 MFCC mandarin consonant distinctive parameter speech evaluation MFCC
  • 相关文献

参考文献8

  • 1Jakobson R,Fant G,Halle M.Preliminarks to speech analysis,the distinctive features and their correlates[C].Cambridge,MA,USA:MIT Acoustic Laboratory,Tech Report no.13,1952.3-8.
  • 2Jakobson R,Halle M.Fundamentals of language[M].s-Gravenhange:Mouton,1956.20-30.
  • 3Chomsky,Halle,The sound pattern of English[M].Cambridge MA,US:MIT Press,1991.6~68.
  • 4Peter Ladefoged.Preliminaries to linguistiic phonetics[M].Chicago University of Chicago Press,1971.91-100.
  • 5吴宗济.试论普通话语音的"区别特征"及其相互关系[J].中国语文,1980,(5).
  • 6张家騄.汉语普通话区别特征系统[J].声学学报,2005,30(6):506-514. 被引量:26
  • 7张家騄.汉语普通话区别特征系统树状图[J].声学学报,2006,31(3):193-198. 被引量:16
  • 8冯晓亮,孟子厚.舌尖辅音和舌面辅音的区别特征参数[A].第八届中国语音学学术会议[C].北京,2008.149.

二级参考文献18

  • 1陆致极.试论普通话音位的区别特征[J].语文研究,1987(4):10-20. 被引量:18
  • 2张家騄.汉语普通话区别特征系统[J].声学学报,2005,30(6):506-514. 被引量:26
  • 3齐士钤 张家禄.汉语普通话辅音音长分析[J].声学学报,1982,(1):8-13.
  • 4张家禄 齐士钤 宋美珍 等.汉语声调在言语可懂度中的重要作用.声学学报,1981,7:237-237.
  • 5张家騄 齐士钤 吕士楠.汉语辅音自觉结构初探[J].心理学报,1982,(1):8-13.
  • 6Miller G A, Nicely P E. An analysis of perceptual confusion among some English consonants. J. Acoust. Soc.Am., 1955; 27(2): 338-352.
  • 7张家騄.言语知觉反映论[J].中国科学,1978,(5):519-530.
  • 8Fant G, Lindblom B. Studies of minimal soeech sound units. STL-QpSR, 1961:1-11.
  • 9Jones D. An outline of English Phonetics, Cambridge: Heffer, 1936.
  • 10Jakobson R, Fant G, Halle M. Preliminaries to speech analysis-the distinctive features and their correlates,Technical Report No.13, Acoustics Laboratory, MIT, reissued 1955.

共引文献32

同被引文献18

  • 1陆致极.试论普通话音位的区别特征[J].语文研究,1987(4):10-20. 被引量:18
  • 2张家騄.汉语普通话区别特征系统[J].声学学报,2005,30(6):506-514. 被引量:26
  • 3张家騄.汉语普通话区别特征系统树状图[J].声学学报,2006,31(3):193-198. 被引量:16
  • 4Andreas Maier, Florian Honig, Christian Hacker, et al. Au- tomatic evaluation of characteristic speech disorders in children with cleft lip and palate [C] //Proc of Interspeeeh, 2008: 1757-1760.
  • 5S Murillo, J R Orozco, J F Vargas, et al. Automatic detec- tion of hypernasality in children [G]. LNCS 6687.. New Chal- lenges on Bioinspired Applications. Berlin.. Springer BerlinHeidelberg, 2011: 167-174.
  • 6Pruthi T, Wilson C Y. Acoustic parameters for the automatic detection of vowel nasalization [C] //Proc of Interspeech, 2007.. 1925-1928.
  • 7Vijayalakshmi P, Ramasubba M, O'Shaughnessy D. Acoustic analysis and detection of hypernasality using a group delay func- tion [J]. IEEETrans, 2007:54 (4): 621-629.
  • 8AriaLondofio J D, Godino-Llorente J I, Sdenz-Lech6n N, et al. Automatic detection of pathological voices using complexity measures, noise parameters and mel-cepstral coefficients [J]. IEEETrans, 2011, 58 (2).. 370-379.
  • 9Orozco J R, Murillo S, Vargas J F, et al. Nonlinear dynamics for hypernasality detection [G]. LNCS 7015: Advances in Nonlinear Speech Processing. Berlin: Springer Berlin Heidel- berg, 2011.. 207-214.
  • 10Orozco J R, Murillo S, .Alvarez A, et al. Automatic selec- tion of acoustic and non-linear dynamic features in voice signals for hypernasality detection [C] //Proc of Interspeech, 2011: 529-32.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部