期刊文献+

并行PSVM算法及其在入侵检测中的应用(英文) 被引量:2

Parallel proximal support vector machine and its application in intrusion detection
下载PDF
导出
摘要 基于并行PSVM(proximal support vector machine)分类法,利用ε-支持向量与原数据集等价的特点,将PSVM和cascade SVM模型高效结合,加速训练入侵数据集.提出一种新的PSVM增量学习方法,它能快捷更新分类器.通过大量基于著名的KDD CUP1999数据集实验,研究表明,该算法相对其他SVM方法,在保证较高检测率和较低误报率的同时,其训练时间降低80%,且能通过增量学习新数据集来有效更新分类器. A novel training method based on parallel proximal support vector machine (PSVM) classification algorithm was proposed. The efficient PSVM and the cascade SVM architecture were used to reduce the time of training through the equivalence between the ε-support vectors and the original dataset. In addition, a new incremental learning method based on PSVM was used to make the update of the classifier easier. The experiments on the KDD CUP 1999 dataset demonstrate that the training time of our methods is 20% less than that of the other SVM methods under the condition of ensuring low false positive rate and high detection rate. it can update the classifier effectively by learning the characteristics of new dataset incrementally.
出处 《深圳大学学报(理工版)》 EI CAS 北大核心 2010年第3期327-333,共7页 Journal of Shenzhen University(Science and Engineering)
基金 supported by the National High Technology Research and Development Program of China (2009AA02Z309)~~
关键词 数据挖掘 并行PSVM 入侵检测 增量学习 ε-支持向量 层叠式SVM data mining parallel proximal support vector machine intrusion detection incremental learning ε-support vector cascade SVM
  • 相关文献

参考文献16

  • 1Ryan J,Lin M J,Miiikkulainen R.基于神经网络的入侵检测[C]//高级神经信息处理系统会议论文集.麻省 (美国):麻省理工学院出版社,1998:943-949.(英文版).
  • 2BalajinathB RaghavanSV.基于学习行为模式的入侵检测.计算机通信,2001,24(12):1202-1212.
  • 3饶鲜,董春曦,杨绍全.基于支持向量机的入侵检测系统[J].软件学报,2003,14(4):798-803. 被引量:135
  • 4Jha S,Tan K,Maxion R A.马尔科夫链,分类器与入侵检测[C]//第14届IEEE计算机安全组织学术会议论文集.华盛顿:IEEE计算机学会出版社,2001:206-215.(英文版).
  • 5HuWM HuW MaybankS.基于AdaBoost算法的网络入侵检测.IEEE系统、人与控制论汇刊B辑:控制论,2008,38(2):577-583.
  • 6Vapnik V.统计学习理论的本质[M].纽约:Springer-Verlag出版社,1995.(英文版).
  • 7ZHU Geng-ming,LIAO Jun-quo.基于支持向量机的入侵检测研究[C]// 第1届高级计算机理论与工程国际会议论文集.普吉岛 (泰国):IEEE计算机学会出版社,2008:434-438.(英文版).
  • 8周鸣争,楚宁,强俊.基于构造性核覆盖算法的异常入侵检测[J].电子学报,2007,35(5):862-867. 被引量:4
  • 9WU Shan-hung,LIN Keng-pei,CHEN Chung-min,等.非对称支持向量机:用户容忍的低误报率[C]//第14届知识发现与数据挖掘国际会议论文集.拉斯维加斯(美国):ACM 出版社,2008:749-757.(英文版).
  • 10KhanL AwadM ThuraisinghamB.基于支持向量机和层次聚类的新型入侵检测系统.超大型数据库杂志,2007,16:507-521.

二级参考文献21

  • 1吴涛,张铃,张燕平.机器学习中的核覆盖算法[J].计算机学报,2005,28(8):1295-1301. 被引量:33
  • 2[1]Forrest S, Perrelason AS, Allen L, Cherukur R. Self_Nonself discrimination in a computer. In: Rushby J, Meadows C, eds. Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1994. 202~212.
  • 3[2]Ghosh AK, Michael C, Schatz M. A real-time intrusion detection system based on learning program behavior. In: Debar H, Wu SF, eds. Recent Advances in Intrusion Detection (RAID 2000). Toulouse: Spinger-Verlag, 2000. 93~109.
  • 4[3]Lee W, Stolfo SJ. A data mining framework for building intrusion detection model. In: Gong L, Reiter MK, eds. Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1999. 120~132.
  • 5[4]Vapnik VN. The Nature of Statistical Learning Theory. New York: Spring-Verlag, 1995.
  • 6[5]Lee W, Dong X. Information-Theoretic measures for anomaly detection. In: Needham R, Abadi M, eds. Proceedings of the 2001 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 2001. 130~143.
  • 7[6]Warrender C, Forresr S, Pearlmutter B. Detecting intrusions using system calls: Alternative data models. In: Gong L, Reiter MK, eds. Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1999. 133~145.
  • 8Anup K Ghosh.Aaron Schwartzbard.A study in using neural networks for anomaly and misuse detection[A].The 8th USENIX Security Symposium[C].Washington D C,1999.46-57.
  • 9Balajinath B,Raghavan S V.Intrusion detection through learning behavior model[J].Computer Communication,2001,24(12):1202-1212.
  • 10Jha S,Tan K,Maxion R A.Markov Chains,classifiers and intrusion detection[A].The 14th IEEE Computer Security Foundations workshop[C].Canada,2001.206-215.

共引文献138

同被引文献22

  • 1KotsialosA PapageorgiouM.高速公路网络匝道最优控制效率与公平问题研究.交通研究(C)-新技术版,12:401-420.
  • 2YuanL KreerJ.高速公路匝道控制中排队长度的调整.交通研究(A)-政策应用版,5:127-133.
  • 3PapageorgiouM Haj-SalemH BlossevilleJM.ALIN-EA-一种单匝道反馈控制律方法.交通研究记录-美国运输研究委员会会刊,(1320):58-64.
  • 4Abdel-AtyM DhindsaA GayahV.高峰期高速公路降低交通事故的几种ALINEA控制策略研究.交通研究(C)-新技术版,15:113-134.
  • 5TaylorC MeldrumD JacobsonL.匝道模糊控制-设计概论与仿真结果.交通研究记录-美国运输研究委员会会刊,(1634):10-18.
  • 6ZhangHM RitchieSG JayakrishnanR.非线性状态反馈的自适应匝道协调控制.交通研究(C)-新技术版,9:337-352.
  • 7WangFY KimHM.基于神经网络的自适应模糊逻辑控制器设计范例.智能与模糊系统学报,1(3):165-180.
  • 8Teodorovie D,Vukadinovic K.交通控制与规划的模糊集和神经网络方法[M].波士顿:Kluwer Academic出版社,1998.(英文版).
  • 9Papageorgiou M.巴黎Boulevard Periphenque交通流建模及实时控制(Ⅰ)建模.交通研究(A政策应用版),5:345-359.
  • 10于秋玲.基于改进NN-SVM算法的网络入侵检测[J].系统工程理论与实践,2010,30(1):126-130. 被引量:6

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部