期刊文献+

存在型空值插补的特征约简方法研究 被引量:1

Feature reduction based on interpolated existential null values
下载PDF
导出
摘要 特征约简是多源信息融合中剔除冗余数据、提高融合精度的有效途径.在对多传感器数据构成的不完备信息系统进行分析的基础上,利用多种距离分析方法计算存在型空值分布区间;针对不完备信息系统同时含有的2种空值类型问题(存在型空值和不存在型空值),提出基于存在型空值插补的限制容差关系;引入知识粒度的概念,并结合特征所包含的知识依存关系,研究基于属性重要度的启发式约简算法;通过实验验证了算法的有效性,并对其性能进行了分析.该方法同时考虑了多种空值类型,更加符合多传感器数据的特征,避免了单纯考虑不存在空值或者遗失空值造成的约简不准确问题;与其他约简算法相比,所提出的算法不仅考虑了单个的填补数值,同时还将插补数值的可能离散集合也考虑进来,增加了约简算法的适应性. In multi-source information fusion,feature reduction is an accepted and effective way to eliminate redundant data and enhance the precision of fusion.Facing an incomplete information system containing sensor data with a multi-source heterogeneous structure,First,variety of analytical methods for calculating distances were used to determine the interval distribution of existing null values.Second,a limited tolerance relation based on interpolating existing null values was proposed for this incomplete information system.It has two kinds of null value types: an existing null value type and an unassigned value type.Next,by combining the interdependent relation of knowledge included in features,the heuristic algorithm for reducing the importance of feature attributes was improved by introducing the concept of knowledge granularity.Subsequently,performance of the algorithm was validated in an experiment.A variety of types of null values were taken into account,as they were more suitable for the features of multi-source heterogeneous sensor data.This eliminated oversimplifications of non-existent or missing null values which then cause inaccurate reductions.Compared with other reduction algorithms,the proposed heuristic algorithm based on knowledge granularity not only considers the filling of a single value,but also the possible discrete set of interpolation values.Both techniques can increase the adaptability of the reduction algorithm.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2010年第6期743-748,共6页 Journal of Harbin Engineering University
基金 中央高校基础科研业务经费资助项目(HEUCF100602) 黑龙江省教育厅科学研究资助项目(11553045) 黑龙江省自然科学基金资助项目(F200901F200917)
关键词 非完备信息系统 特征约简 限制容差关系 知识粒度 incomplete information system feature reduction tolerance relation knowledge granularity
  • 相关文献

参考文献14

  • 1PAWLAK Z. Rough sets [ J ]. International Journal of Computer and Information Sciences, 1982, 11 : 541-356.
  • 2PAWLAK Z. Rough sets : theoretical aspects of reasoning about data [ M ]. London: Kluwer Academic Publishers, 1991:206.
  • 3GRZYMALA-BUSSE J W, FU M. A comparison of several approaches to missing attribute values in data mining [ C ]// Proc of the 2nd Intl Conf on Rough Sets and Current Trends in Computing. Berlin : Springer-Verlag, 2000:378-385.
  • 4KRYAZKIEWIEZ M. Rough set approach to incomplete information systems [ J ]. Information Sciences, 1998, 112 : 39-49.
  • 5KRYAZKIEWIEZ M. Rules in incomplete systems [ J]. Information Sciences, 1999, 113: 271-292.
  • 6LEUNG Y, LID. Maximal consistent block technique for rule acquisition in incomplete information systems [ J ]. Information Sciences, 2003, 153: 85-106.
  • 7STEFANOWSKI J, TSOUKIAS A. On the extension of rough sets under incomplete information [ C ]//Proc of the 7th Intl Workshop on New Directions in Rough Sets, Data Mining, and Granular-Soft Computing. Berlin: Springer- Verlag, 1999:73-81.
  • 8王国胤.Rough集理论在不完备信息系统中的扩充[J].计算机研究与发展,2002,39(10):1238-1243. 被引量:303
  • 9黄兵,周献中.不完备信息系统中基于联系度的粗集模型拓展[J].系统工程理论与实践,2004,24(1):88-92. 被引量:43
  • 10张伟钢,潘泉,张洪才.基于相似关系的数据库分类不一致程度评价[J].计算机学报,2008,31(1):91-103. 被引量:4

二级参考文献59

  • 1盛步云,林志军,丁毓峰,罗丹,谢庆生.基于粗糙集的协同设计冲突消解事例推理技术[J].计算机集成制造系统,2006,12(12):1952-1956. 被引量:16
  • 2王珺,曹涌涛,糜正琨.无线传感器网络Mobile Agent路由问题的模拟退火解法[J].南京邮电大学学报(自然科学版),2007,27(1):64-68. 被引量:6
  • 3刘春亚 何伟.一种基于粗集的缺损数据的处理方法[J].计算机科学,2002,29(9):44-46.
  • 4郝忠孝.空值环境下数据库系统[M].北京:机械工业出版社,1996..
  • 5PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982,11 (5) : 341-356.
  • 6SLOWINSKI R, STEFANOWSKI J. Handing various types of uncertainty in the rough set approach[C]//Proeeedings of International Workshop on Rough Sets and Knowledge Diseov cry:Rough Sets, Fuzzy Sets and Knowledge Discovery. London, UK:Springer-Verlag, 1993:366-376.
  • 7THIESSON B. Accelerated quantification of Bayesian net works with incomplete data[C]//Proceedings of the 1st Inter national Conference on Knowledge Discovery and Data Min ing. Menlo Park, Cal., USA;AAAI Press, 1995:306-311.
  • 8SLOWINSKI R, VANDERPOOTEN D. A generalized definition of rough approximations based on similarity [J]. IEEE Transactions on Knowledge and Data Engineering, 2000, 12(2):331-336.
  • 9SARWAR B M. Sparsity, scalability, and distribution in recommender systems[D]. Minneapolis, Minn. , USA: University of Minnesota, 2001.
  • 10ACIDLY I F,SU W,SANKARASUBRAMANIAM Y,et al.Wireless sensor networks:A survey[J].Computer Networks,2002,38(4):393-422.

共引文献324

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部