期刊文献+

基于Haar尺度变换的连续分片线性逼近

Continuous piecewise linear approximation based on Haar scale transform
下载PDF
导出
摘要 为了获得非线性系统的连续逼近,提出一种基于Haar尺度变换的连续分片线性逼近算法。由非线性函数的Haar尺度变换获得尺度系数,用紧支撑连续分片线性基函数重构出非线性函数的连续分片线性逼近。理论分析证明这种逼近可以达到任意精度。仿真试验表明:相对于Haar小波逼近,连续分片线性逼近的误差收敛得更均匀。算法的一个显著优势是可以给出逼近的解析表达式。因为Haar尺度变换的计算复杂度低(相当于算术平均),紧支撑连续分片线性基函数的结构简单,所以算法易于推广。 In order to achieve continuous approximation on nonlinear systems,this paper presents an algorithm for continuous piecewise linear approximation based on Haar wavelet transform.The scaling coefficients are obtained using the Haar scaling transformation of a nonlinear function,and then the continuous piecewise linear approximation of the nonlinear function is reconstructed using the compactly supported continuous piecewise linear basis functions.Theoretical analysis proves that the approximation can achieve any accuracy.The simulation demonstrates that the error convergence of the continuous piecewise linear approximation is more uniform than that of the Haar wavelet approximation.It is an obvious advantage that the algorithm provides an analytical expression of approximation.Since the computational complexity of the Haar scale transform(correspond to arithmetic average) is low and the structure of the compactly supported continuous piecewise linear basis functions is simple,it is ease for a wide application of proposed algorithm.
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2010年第3期521-524,共4页 Journal of Liaoning Technical University (Natural Science)
基金 国家自然科学基金资助项目(70471065)
关键词 分片线性 小波变换 逼近 piecewise linear wavelet transform approximation
  • 相关文献

参考文献10

  • 1Chua L O Deng A.Canonical piecewise-linear modeling[J].IEEE Trans.Circuits Syst.I,1986,33(4):511-525.
  • 2Lin J N,Unbehauen R.Adaptive nonlinear digital filter with canonical piecewise-linear structure[J].IEEE Trans.Circuits Syst.,1990,37(3):347-353.
  • 3Lin J N,Unbehauen R.Canonical piecewise-linear approximations[J].IEEE Trans.Circuits Syst.,1992,39(5):697-699.
  • 4Breiman L.Hinging hyperplanes for regression,classification and function approximation[J].IEEE Trans.Inf.Theory,1993(39):999-1013.
  • 5Friedman J,Stuetzle W.Projection pursuit regression[J].J.Am.Statist.Assoc.,1981(76):817-823.
  • 6Wang S N,Narendra K S.Nonlinear system identification with lattice piecewise linear functions[J].Proc.American Control Conference.Jan.2002(1):388-393.
  • 7Julian P,Jordan M,Desages A.Canonical piecewise-linear approximation of smooth functions[J].IEEE Trans.Circuits Syst.,1998,45(4):567-571.
  • 8Mallat S.Multiresolution approximations and wavelet orthonormal bases of L2(R)[J].Trans.Amer.Math.Soc.,1989(315):69-87.
  • 9Daubechies I.Orthonormal bases of compactly supported wavelets[J].Communications on Pure and Applied Mathematics,1988(41):909-996.
  • 10曾繁会,李伟,吕渭济.多重共线性问题的神经网络实例分析[J].辽宁工程技术大学学报(自然科学版),2001,20(5):659-661. 被引量:7

二级参考文献2

  • 1罗积玉 邢瑛.经济统计分析方法及预测[M].北京:清华大学出版社,1990..
  • 2张乃尧 阎平凡.神经网络与模糊控制[M].北京:清华大学出版社,1990..

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部