摘要
In this study we propose an analytical method based on orthogonal wavelet transforms for detecting harmonic noise and Electromagnetic Interference (EMI) from power supply systems and equipment in coal mines. The method will separate interference from signals through wavelet packet decomposition and then accomplish wavelet packet synthesis towards decomposition results after filtering, to remove harmonic noise and electromagnetic interference. Detailed simulation experiments are presented to study power harmonics and Electrical Fast Transient Burst (EFT/B) interference and to validate the effectiveness of our proposed method. The experimental results show that the proposed method, suitable for mutant and non-stationary signal detection, can accurately analyze harmonic interference and EMI in coal mines, as well as establish EMI source models and perform underground Electromagnetic Compatibility (EMC) prediction analyses.
In this study we propose an analytical method based on orthogonal wavelet transforms for detecting harmonic noise and Electromagnetic Interference (EMI) from power supply systems and equipment in coal mines. The method will separate interference from signals through wavelet packet decomposition and then accomplish wavelet packet synthesis towards decomposition results after filtering, to remove harmonic noise and electromagnetic interference. Detailed simulation experiments are presented to study power harmonics and Electrical Fast Transient Burst (EFT/B) interference and to validate the effectiveness of our proposed method. The experimental results show that the proposed method, suitable for mutant and non-stationary signal detection, can accurately analyze harmonic interference and EMI in coal mines, as well as establish EMI source models and perform underground Electromagnetic Compatibility (EMC) prediction analyses.
基金
the financial support for our work by the Doctoral Foundation of Ministry of Education of China (No.200802900008)