期刊文献+

Hydraulic calculation of steady uniform flows in trapezoidal compound open channels

Hydraulic calculation of steady uniform flows in trapezoidal compound open channels
下载PDF
导出
摘要 Hydraulic calculation of steady uniform flows in trapezoidal compound open channels is studied. Based on the force balance of water in each sub-section, the average velocities of the main channel, side slope, and floodplain are derived. The lateral momentum exchanges between the sub-sections are expressed by using the apparent shear stress. To verify the model, seven groups of UK Flood Channel Facility (UK-FCF) measured data with a relative water depth between the floodplain and the main channel varying from 0.057 to 0.4 are used for comparison. The result shows that the calculated velocity is larger than the measured data when the relative water depth is small, while it is less than or close to the measured value in the case of a larger relative water depth. The influence of the apparent shear stress on the calculation of velocity on the floodplain is not obvious, while it is much greater on the main channel. The three-stage model is compared with Liu’s two-stage model, showing that the former can give a better prediction for a three-stage trapezoidal compound channel. Finally, the apparent shear stress is calculated and compared with the measured data. The result shows that the chosen values of the momentum transfer coefficients are appropriate. Hydraulic calculation of steady uniform flows in trapezoidal compound open channels is studied. Based on the force balance of water in each sub-section, the average velocities of the main channel, side slope, and floodplain are derived. The lateral momentum exchanges between the sub-sections are expressed by using the apparent shear stress. To verify the model, seven groups of UK Flood Channel Facility (UK-FCF) measured data with a relative water depth between the floodplain and the main channel varying from 0.057 to 0.4 are used for comparison. The result shows that the calculated velocity is larger than the measured data when the relative water depth is small, while it is less than or close to the measured value in the case of a larger relative water depth. The influence of the apparent shear stress on the calculation of velocity on the floodplain is not obvious, while it is much greater on the main channel. The three-stage model is compared with Liu’s two-stage model, showing that the former can give a better prediction for a three-stage trapezoidal compound channel. Finally, the apparent shear stress is calculated and compared with the measured data. The result shows that the chosen values of the momentum transfer coefficients are appropriate.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第8期947-954,共8页 应用数学和力学(英文版)
基金 Project supported by the National Natural Science Foundation of China (Nos. 50709025 and50979078) the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry
关键词 compound channel apparent shear stress lateral momentum exchange average velocity compound channel, apparent shear stress, lateral momentum exchange, average velocity
  • 相关文献

参考文献2

二级参考文献8

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部