期刊文献+

Z形折叠薄膜充气管充气展开过程仿真 被引量:2

Simulation of Inflation Deployment of Z-Folded Membrane Tube
下载PDF
导出
摘要 展开过程仿真是评估空间充气折叠结构展开力学行为的重要工具,仿真结果可以进一步指导折叠方案和展开构型的设计改进。笔者基于控制体积法和有限元法,建立了多次Z形折叠充气管的有限元模型,阐明了折叠管充气展开仿真计算的基本原理和建模处理方法。通过对比研究不同充气速率条件下充气管在展开过程中各参数的动态变化规律,表明充气速率是影响Z形折叠充气管展开性能中至关重要的因素。充气速率越快,展开越快捷。但充气速率过高,展开过程对母体的扰动力也越大,并且带来展开后期管体自身的严重振荡。适当选择充气速率,可以有效降低扰动载荷峰值,并且有利于展开后期管体自身振荡的迅速衰减。适当增加充气管薄膜的厚度,虽然增加了对母体的扰动力,但可以有效降低管体展开后期的振荡速度。 The deployment simulation of folded inflatable antenna beam is an important means for assessing inflatable deployment behavior in space environment and for guiding and improving future packaging and deployment concepts.Based on the control volume method,the finite element model of Z-folded membrane tube is established.Analysis and comparison of different inflation rates are conducted to investigate the deployment dynamic properties.The simulation results show that inflation rate is a vital factor which affects the deployment dynamic properties.A high inflation rate reduces the deployment time,but the disturbing force applied on the master structure will increase,and lead to a serious tube swing in the subsequent deployment process.A proper inflation rate can reduce the peak value of disturb force and result in a quicker attenuation of tube swing.Moreover,the membrane thickness has some effect on deployment stabilization of inflatable tube.By choosing a reasonable membrane thickness,the swing amplitude in the deployment process can be effectively reduced.
出处 《机械科学与技术》 CSCD 北大核心 2010年第7期930-935,共6页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(10602045)资助
关键词 控制体积法 有限元法 仿真 展开 稳定性 衰减 充气速率 薄膜厚度 control volume method finite element method simulation deployment stabilization attenuation inflation rate membrane thickness
  • 相关文献

参考文献13

  • 1Jenkins C H M. Gossamer Spacecraft: Membrane and Inflatable Structures Technology for Space Applications [ M ]. AIAA, 2001.
  • 2Cadogan D, Smith T, Lee R, Scarborough S, Grazlosi D. Inflatable and rigidizable wing components for unmanned aerial vehicles [ A ]. AIAA-2003.6630, 44th AIAA/ASME/ASCE/ AHS/ASC structures, Structural Dynamics and Materials Conference[ C] , Norfolk, VA, April, 2003.
  • 3Clem A L, Smith S W, Main J A. A pressurized deployment model for inflatable space structures [ A ]. Proceedings of the 41th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference[ C], AIAA, Reston, VA, 2000.
  • 4Salama M, Kuo C P, Lou M. Simulation of deployment dynamics of inflatable structures[J]. AIAA Journal, 2000,38(12): 2277 - 2283.
  • 5Wang J T, Johnson A R. Deployment Simulation of Ultra- Lightweight Inflatable Structures[ R]. AIAA-2002-1261.
  • 6Lienard S, Lefever Y. Modeling and analysis of the deployment of a rolled inflatable beam using MSC-DYTRAN [ A ]. 46th AIAA/ASME/ASCE/AHS/ASC Structurm, Structural Dynamics & Materials Conference[ C ], 18-21 April 2005, Austin, Texas.
  • 7刘晓峰,谭惠丰,杜星文.充气太空管展开模拟[J].哈尔滨工业大学学报,2004,36(5):684-687. 被引量:10
  • 8刘晓峰,杜星文,谭惠丰.薄膜充气管充气展开特性试验[J].上海航天,2007,24(6):56-60. 被引量:2
  • 9卫剑征,苗常青,谭惠丰,杜星文.空间充气展开结构展开过程仿真分析[A].首届全国航空航天领域中力学问题学术研讨会[c],四川.峨眉山.2004.
  • 10肖潇,关富玲,韩克良,程亮.卷曲折叠充气管展开实验研究[J].实验力学,2008,23(4):317-326. 被引量:5

二级参考文献23

  • 1FREELAND R E, BILYEU G D, VEAL G R, et al.Iarge inflatable deployable antenna flight experiment results[R]. [s. l.]:[s.n.],IAF-97-1.3.01: 1-11.
  • 2CADOGAN D P, LIN J K, GRAHNE M S. Inflatablesolar array technology [ A ]. AIAA Conference [ C ].[s. l. ]:[s.n. ], 1999. AIAA-99-1075:1-8.
  • 3CASSAPAKIS C, TOMAS M. Inflatable structures technology development overview [ A ]. AIAA Conference[C].[s.l.]:[s.n. ], 1995. AIAA-95-3738: 1-10.
  • 4MICHAEL L, HOUFEI F, HSIA L M. A combined analytical and experimental study on space inflatable booms[A].IEEE[C]. [s. l. ] :[s.n. ], 2000. 503 -511.
  • 5CLEM A L, SMITH S W, MAIN J A. Deployment dynamics of an inflatable array [ A ]. AIAA Conference[C]. [s. l.]:[s. n.], 1999. AIAA-99- 1520:2516 - 2523.
  • 6CLEM A L, SMITH S W, MAIN J A. A pressurized deployment model for inflatable space structures [ A ].AIAA Conference[ C]. [ s. l. ]: [ s. n. ], 2000. AIAA-2000 - 1801: 130 - 140.
  • 7MOKTAR S, KUO C P, LOU M. Simulation of deployment dynamics of inflatable structures [ J ]. AIAA Journal, 2000, 38(12): 2277-2283.
  • 8WANG J T, JOHNSON A R. Deployment simulation of ultra - lightweight inflatable structures [ A ]. AIAA Conference[C]. [s. l.]: [s. n. ], 2002. AIAA-2002 - 1261: 1 - 14.
  • 9SMITHSM, ELLIOTITM D, MAINJA, etal. Post flight testing and analysis of zero - gravity deployment of an inflatable tube[ A]. AIAA Conference[ C]. [ s.1. ] :[s.n. ], 2001. AIAA-2001 -1265.
  • 10CASSAPAKIS C, THOMAS M. Inflatable structures technology development overview[ C]. Norfolk: 3^th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference, 1995.

共引文献12

同被引文献15

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部