期刊文献+

求解双线性单自由度复合随机系统

Solution to Bi-linear SDOF Compound Stochastic Vibration
下载PDF
导出
摘要 在单自由度线性复合随机系统研究及Monte Carlo法模拟的基础上,引入求解随机问题的非线性改进随机摄动法,将双线性单自由度随机结构看成是均值结构及其变分,假定反应的概率分布类型为正态分布或均匀分布,从而将双线性复合随机微分方程展开为线性摄动随机微分方程,然后与虚拟激励法结合,迭代求解随机反应.算例的计算结果表明,将非线性改进随机摄动法与虚拟激励法结合,所得的非线性复合随机振动系统的随机反应还是较为准确的.为取得更精确的计算结果,反应的概率分布类型的正确选择很重要. Based on the research of linear SDOF compound stochastic vibration and Monte Carlo simulation,non-linear improved stochastic perturbation method is adopted to solve single stochastic problem,and bi-linear SDOF stochastic structure is expanded to mean part and variation part.Then,the probability distribution type of stochastic response is assumed as normal distribution or uniform distribution.As a result,bi-linear compound stochastic differential equation is expanded to linear perturbation stochastic differential equations.Stochastic response is obtained with the pseudo excitation method and iteration.A case study shows that the combination of non-linear improved stochastic perturbation method with pseudo excitation method can get relatively accurate result of stochastic response of non-linear compound stochastic vibration system.For more accurate results,precise pre-estimate of the probability distribution type of stochastic response is very important.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第7期941-947,1051,共8页 Journal of Tongji University:Natural Science
基金 国家自然科学基金资助项目(90915011)
关键词 非线性改进随机摄动法 双线性随机结构 非线性复合随机振动 non-linear improved stochastic perturbation method bi-linear stochastic structure non-linear compound stochastic vibration
  • 相关文献

参考文献12

  • 1Naess A.Prediction of extreme response of nonlinear structures by extended stochastic linearization[J].J Pro Engng Mech,1995(10):153.
  • 2Pol D Spanos,Spyro Tsavachidis.Deterministic and stochastic analyses of a nonlinear system with a Biot visco-elastic element[J].J Earthquake Engng Struct Dyn,2001,30:595.
  • 3Crandall S H.Is stochastic equivalent linearization a subtly flawed procedure?[J].J Probabilistic Engineering Mechanics,2001,16:169.
  • 4Andrew W Smyth,Sami F Masri.Non-stationary response of nonlinear systems using equivalent linearization with a compact analytical form of the excitation process[J].J Probabilistic Engineering Mechanics,2002,17:97.
  • 5Proppe C,Pradlwarter H J,Schueller G I.Equivalent linearization and Monte Carlo simulation in stochastic dynamics[J].J Probabilistic Engineering Mechanics,2003,18:1.
  • 6Koyluoglu H U,Nielsen S R K,Cakmak A S.Solution of random structural system subject to non-stationary excitation:transforming the equation with random coefficients to one with deterministic coefficients and random initial conditions[J].J Soil Dynamics and Earthquake Engineering,1995,14:219.
  • 7LIU Wingkam,Ted Bel Ytschko Mani.A probabilistic finite elements for nonlinear structural dynamics[J].J Computer Methods in Applied Mechanics and Engineering,1986,56:61.
  • 8Micaletti R C,Cakmak A S,Nielsen S R K,et al.A solution method for linear and geometrically nonlinear MDOF systems with random properties subject to random excitation[J].J Pro Engng Mech,1998,13(2):85.
  • 9Yasuki Ohtori,Billie F Spencer Jr.,M ASCE.Semi-implicit integration algorithm for stochastic analysis of multi-degree-of-freedom structures[J].J Eng Mec,2002,128(6):635.
  • 10Nicola Impollonia,Giuseppe Muscolino.Static and dynamic analysis of non-linear uncertain structures[J].J Meccanica,2002,37:179.

二级参考文献10

  • 1[3]Zhu Q W,Ren Y J,Wu W Q.Stochastic FEM Based on Local Averages of Random Vector Fields[J].Engrg Mec,1992,118(3):496-511.
  • 2[4]Li Jie,Chen Jian-bing.The Probability Density Evolution Method for Dynamic Response Analysis of Non-linear Stochastic Structures[J].Int J Numer Meth Engng,2006,65:882-903.
  • 3[7]Micaletti R C,Cakmak A S,Nielsen S R K,et al.A Solution Method for Linear and Geometrically Nonlinear MDOF Systems with Random Properties Subject to Random Excitation[J].J Pro Engng Mech,1998,13(2):85-95.
  • 4[8]Naess A.Prediction of Extreme Response of Nonlinear Structures by Extended Stochastic Linearization[J].J Pro Engng Mech,1995,(10):153-160.
  • 5[9]Nicola Impollonia,Giuseppe Muscolino.Static and Dynamic Analysis of Non-linear Uncertain Structures[J].J Meccanica,2002,37:179-192.
  • 6[10]Yasuki Ohtori,Billie F Spencer Jr.Semi-implicit Integration Algorithm for Stochastic Analysis of Multi-degree-of-freedom Structures[J].J Eng Mec ASCE,2002,128(6):1-4.
  • 7[11]Proppe C,Pradlwarter H J,Schueller G I.Equivalent linearization and Monte Carlo simulation in stochastic dynamics[J].J Pro Engng Mech,2003,18:1-15.
  • 8[12]蒋甫,戴丽思.工程地震学概论[M].北京:地震出版社,1993.
  • 9王光远.论不确定性结构力学的发展[J].力学进展,2002,32(2):205-211. 被引量:73
  • 10张强,焦群英.分析非线性随机结构动态响应的等效随机系统法[J].中国农业大学学报,2004,9(1):60-62. 被引量:2

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部