期刊文献+

VLS同质外延6H-SiC薄膜生长的研究

Homoepitaxial 6H-SiC Thin Films by Vapor-Liquid-Solid Mechanism
下载PDF
导出
摘要 碳化硅(SiC)是第三代宽禁带半导体材料,在高温、高频、高功率、光电子及抗辐射等方面具有巨大的应用潜力。以CH4、SiH4为反应气体,H2为载气,采用化学气相沉积法,利用气-液-固(VLS)生长机理,同质外延6H-SiC薄膜。结果表明,VLS机制能在外延薄膜的表面有效地封闭微管,但是由于n(C)/n(Si)较大,薄膜表面存在大量的台阶。为了进一步改善薄膜表面形貌,采用"两步法"工艺外延SiC薄膜,在封闭微管的同时提高了表面平整度,得到了质量较好的6H-SiC外延薄膜。 Silicon carbide(SiC) is a Ⅳ-Ⅳ compound semiconductor with a wide energy band gap. Because of its outstanding properties, SiC can be used in high-power, high-frequency, high-temperature devices with high radiation resistance. CH4-SiH4-H2 system is used to homoepitaxy 6H-SiC thin films by vapor-liquid-solid(VLS) mechanism Although there are lots of steps on the grown thin film surface, micro-pipes are closed by VLS mechanism. In order to improve morphology of the epilayers, a two-step method was proposed for homoepitaxial growth of high quali-ty 6H- SiC thin films, combining VLS growth and conventional CVD. The results show that the films grown by two-step method have better crystalline quality and smaller surface roughness than the conventional CVD and one-step VLS methods.
出处 《材料导报》 EI CAS CSCD 北大核心 2010年第14期1-4,共4页 Materials Reports
基金 教育部新世纪优秀人才支持计划(NCET-04-0895)
关键词 6H—SiC 同质外延 气-液-固生长机理 6H-SiC, homoepitaxy, vapor-liquid-solid mechanism
  • 相关文献

参考文献16

  • 1Gutkin M Yu, Sheinerman A G, Argunova T S, et al. Ramification of micropipes in SiC crystals[J]. J Appl Phys, 2002,92: 889.
  • 2Neudeck P G, Powell J A. Performance limiting micropipe defects in silicon carbide wafers[J]. IEEE Electron Device Lett, 1994,15 : 6:3.
  • 3Neudeck P G. Electrical impact of SiC structural crystal defects on high electric field devices[J]. Mater Sci Forum, 2000,338-342: 1161.
  • 4Yakimova R, Syvajavi M, Rendakova S, et al. Micropipe healing in liquid phase epitaxial growth of SiC[J]. Mater Sci Forum, 2000,338-342:237.
  • 5Kamata I, Tsuchida H, Jikimoto T, et al. Structural transformation of screw dislocation via thick 4H-SiC epitaxial growth [J]. Jpn J Appl Phys, 2000, 39 : 6496.
  • 6Kamata I, Tsuchida H, Jikimoto T, et al. Influence of 4H- SiC growth conditions on micropipe dissociation[J]. Jpn J Appl Phys,2002,41 : 1137.
  • 7Tsuchida H, Kamata I, Jikimoto T, et al. 4H-SiC epitaxial growth for high-power devices[J]. Mater Sci Forum, 2003, 433-436 : 131.
  • 8Kimoto T, Danno K, Fujihira K, et al. Complete micropipe dissociation in 4H-SIC(03-38) epitaxial growth and its impact on reverse characteristics of Schottky barrier diodes [J]. Mater Sci Forum,2003,433-436..197.
  • 9Kojima K, Kuroda S, Okumura H, et al. Homoepitaxial growth of 4H-SiC on on-axis(0001) C-face substrates by J Crystal Growth, 2004,269:.
  • 10Soueidan M, Ferro G, Cauwet F, et al. Using vapour-liquid-solid mechanism for SiC homoepitaxial growth on onaxis a-SiC (0001) at low temperature[J]. Mater Sci Forum, 2006,527-529: 271.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部