期刊文献+

退火条件对Sn量子点生长和红外光学性质的影响

Effect of Annealing Conditions on the Morphology and Optical Properties of Sn Quantum Dots
下载PDF
导出
摘要 首次采用固相外延生长技术在Si(001)表面直接生长Sn量子点,并应用原子力显微镜(AFM)、X射线衍射(XRD)和同步辐射傅里叶红外光谱(FTIR)研究了退火条件对量子点样品的表面形貌、结晶性和红外光学性质的影响。AFM结果表明,随着退火温度的升高和退火时间的延长,量子点的平均尺寸变大,面密度减小。XRD结果显示,外延得到的Sn量子点为四方结构的β-Sn,与衬底的相对取向为Sn(110)//Si(001)。由于β-Sn量子点的尺寸仍较大,同步辐射FTIR谱中没有观察到量子点的特征吸收峰。 Sn quantum dots(QDs) are directly deposited on Si(001) substrate by solid phase epitaxy for the first time. The effects of annealing conditions on the morphology, crystallinity and infrared absorption property of Sn QDs are investigated by atom force microscopy(AFM), X-ray diffraction(XRD) and fourier transform infrared spectroscopy(FTIR). AFM results show that either to increase annealing temperature or to prolong annealing time will lead to form larger Sn QDs with lower density. According to the XRD results, the formed Sn QDs are in tetragonal structure of β-Sn, with a distinct orientation on Si substrate of Sn(110)//Si(001). Due to the large size of Sn QDs, its characteristic absorption peak is not observed from the synchrotron FTIR spectroscopy.
出处 《材料导报》 EI CAS CSCD 北大核心 2010年第14期19-21,36,共4页 Materials Reports
基金 教育部"博士生创新计划"同步辐射研究生创新基金资助项目(20090655S) 河南大学省部共建项目(SBGJ090514)
关键词 Sn量子点 固相外延 同步辐射红外光谱 Sn quantum dot, solid phase epitaxy, synchrotron FTIR
  • 相关文献

参考文献14

  • 1赵凤瑷,张春玲,王占国.半导体量子点及其应用(Ⅰ)[J].物理,2004,33(4):249-256. 被引量:28
  • 2Nakajima A, Futatsugi T, Horiguchi N, et al. Formation of Sn nanocrystals in thin SiO2 film using low-energy ion implantation [J]. Appl Phys Lett, 1997,25 ( 1 ) : 3652.
  • 3Kremer F, Lopes J M J, Zawislak F C, et al. Low temperature aging effects on the formation of Sn nanoclusters in SiO2/Si films and interfaces[J]. Appl Phys Lett, 2007, 91 (8) :083102.
  • 4Huang S J, Cho E C, Conibeer G, et al. Fabrication and characterization of tin-based nanocrystals[J]. J Appl Phys, 2007,102 ( 11 ): 14304.
  • 5Arslan I, Yates T J V, Browning N D, et al. Embedded nanostructures revealed in three dimensions [J]. Science, 2005,309 (5744) : 2195.
  • 6Karim A, Hansson G V, Ni W X, et al. Photoluminescence studies of Sn quantum dots in Si grown by MBE[J]. Optical Mater,2005,27(5) :836.
  • 7Spiga S, Mantovan R, et al. Local structure of Sn implanted in thin SiO2 films[J]. Phys Rev B, 2003,68(20) : 205419.
  • 8Hu D Z, Zhao D T, Jiang W R, et al. Growth of Ge quanturn dots on vicinal Si(001) substrate by solid phase epitaxy[J]. J Cryst Growth,2002,236(4) :557.
  • 9Khan A T, Berger P R, Guarin F J, et al. Band-edge photoluminescence from pseudomorphic Si0.96 Sn0.04 alloy[J]. Appl Phys Lett, 1996,68(22) : 3105.
  • 10Wang K F, Liu J F, Peng C X, et al. Deposition of high-density Ge quantum dots on ultra-thin SiO2/Si (111) film surface[J]. Physica E, 2007,39 (1) : 89.

二级参考文献27

  • 1[1]Esaki L,Tsu R.IBM J Res Dev.,1970,14:467
  • 2[2]Li F,Wang J Z,Ye X L et al.J.App.Phys.,2001,89:4186
  • 3[8]Jorg Fricke,Richard Ntzel,Uwe Jahn et al.J.Appl.Phys.,1999,85:3576
  • 4[10]Konkar A,Madhukar A,Chen P.Appl.Phys.Lett.,1998,72:220
  • 5[11]Jin G,Liu J L,Thomas S G et al,Appl.Phys.Lett.,1999,75:2752
  • 6[12]Kumar Shiralagi ,Ruth Zhang,Raymond Tsui.J.Cryst.Growth,1999,201/202:1209
  • 7[13]Cheol Koo Hahn,Young Ju Park,Eun Kyu Kim et al.Appl.Phys.Lett .,1998,73:2479
  • 8[14]Shigeru Kohmoto,Hitoshi Nakamura,Tomonori Ishikawa et al.Appl.Phys.Lett.,1999,75:3488
  • 9[15]Hyon C K,Choi S C,Song S H.Appl.Phys.Lett.,2000,77:2607
  • 10[16]王亚东.半导体学报,2001,22:1116[Wang Y D.Chinese Journal of Semicondutors,2001,22:1116(in Chinese)]

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部