期刊文献+

基于离散增量的蛋白质β发夹模体识别

Recognition of β-hairpin motif in the protein based on the algorithm of discrete increments
下载PDF
导出
摘要 从蛋白质的氨基酸序列出发,应用离散增量的方法对3088个蛋白质的β发夹模体和非β发夹模体进行了识别.以氨基酸(20种氨基酸和一个空位)和氨基酸紧邻关联为参量,利用10-fold交叉检验的方法进行检验,获得了良好的预测效果. β-hairpins and non-hairpins motifs of the 3 088 protein chains were recognized by the algorithm of discrete increments.The compositions of amino acids and twin amino acids were chosen as information parameters of the amino acids sequences.10-fold cross-validation methods are used for checking the results of prediction which is proved to be fairly good.
作者 姜雪 刘智
出处 《高师理科学刊》 2010年第4期84-86,113,共4页 Journal of Science of Teachers'College and University
关键词 β发夹模体 离散增量 氨基酸 β-hairpin motif increment of diversity amino acid
  • 相关文献

参考文献7

  • 1Cruz X,Hutchinson E G,Shepherd A,et al.Toward predicting protein topology:an approach to identifying B hairpins[J].Proc.Natl Acad.Sci.USA,2002,99:11 157-11 162.
  • 2Kuhn M,Meile J,Baker D.Strand-Loop-Strand Motifs:Prediction of Hairpins and Diverging Turns in Proteins[J].Bioinformatics,2004,54:282-288.
  • 3Kumar M,Bhasin M,Natt N K,et al.BhairPred:prediction of b-hairpins in a protein from multiple alignment information using ANN and SVM techniques[J].Nucleic Acids Research,2005,33:154-159.
  • 4胡秀珍,李前忠.用离散量的方法识别蛋白质的超二级结构[J].生物物理学报,2006,22(6):424-428. 被引量:16
  • 5姜雪,胡秀珍.蛋白质β-发夹模体片断的识别[J].内蒙古工业大学学报(自然科学版),2008,27(2):88-94. 被引量:3
  • 6姜雪,胡秀珍.打分矩阵方法在β-发夹模体识别中的应用[J].生物信息学,2008,6(4):156-158. 被引量:6
  • 7Taylo W R.Identiification of protein sequence homology consensus temp late alignment[J].J.Mol.Biol,1986,188(2):233-258.

二级参考文献31

  • 1李凤敏,李前忠.蛋白质亚细胞定位的识别[J].生物物理学报,2004,20(4):297-306. 被引量:11
  • 2杨科利,李前忠,林昊.预测酵母(Yeast)基因转录因子结合位点[J].内蒙古大学学报(自然科学版),2006,37(5):524-530. 被引量:16
  • 3胡秀珍,李前忠.用离散量的方法识别蛋白质的超二级结构[J].生物物理学报,2006,22(6):424-428. 被引量:16
  • 4[1]Jones DT,Tress M,Bryson K,et al.Successful recognition of protein folds using threading methods biased by sequence similarity and predicted secondary structure[J].Proteins,1999,S(3):104-111.
  • 5[2]Sun Z R,Jing B.Pattems and confonnations of commonly occunring super-secondary structures(basicmotifs)in protein data bank[J].Protein Chem.,1996,15(7):675-690.
  • 6[4]Sun Z,Rao X,Peng L,et al.Prediction of protein supersecondary structores based on artificial neural network method[J].Protein Engineering,1997,10(7):763-769.
  • 7[5]Cruz X,Hutchinson EG,Shepherd A,et al.Toward predicting protein topology:an approach to identifying B hairpins[J].Proc.Natl Acad.Sci.USA,2002,99(17):11157-11162.
  • 8[6]Kuhn M,Meile J,Baker D.Strand-Loop-Strand Motifs:Prediction of Hairpins and Diverging Turns in Proteins[J].Bioinformatics,2004,54:282-288.
  • 9[7]Kumar M,Bhasin M,Natt N K,et al.BhairPred:prediction of bhairpins in a protein from multiple aligmnent information using ANN and SVM techniques[J].Nucleic Acids Research,2005,33:W154-W159.
  • 10[8]Kel A E,GoBling E,Reuter I,et al.MATCHTM:a tool for seasching transcription factor binding sites in DNA sequences[J].Nucleic Acids Research,2003,31(13):3576-3579.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部