摘要
包括5个定理.第一个定理提出了一种构造Bent函数的新方法,依此可定出大量在实用中很重要的Bent函数.第二个定理对2次Bent函数进行仿射分类,证明了2次Bent函数仅有2类,并定出其每一类中的代表元素.第三个定理指出一类布尔函数不是Bent函数.第四个定理研究了Bent函数的广义相关免疫性.第五个定理指出了杨义先等的一个错误,说明当e不等于0时。
This paper includes five
theorems.The first theorems presents a new method to construct Bent functions.By means of
this method,a lot of Bent functions which are very important in practice can be constructed.The
second theorem classifies the quadratic Bent functions by the affine classification.We prove
that there are only two classes of quadratic Bent functions and give out the represent element
of each class.The third theorem presents a class of Boolean functions which isn't Bent function.
The fourth theorem presents the extended Correlation-Immune of Bent function.In the fifth
theorem,We point out an error in ,demonstrate that the function which is a plus of extended
e-Bent function and the nonlinear function is not an extended e-Bent function when e is not
equal to zero.
出处
《湘潭大学自然科学学报》
CAS
CSCD
1999年第1期7-11,共5页
Natural Science Journal of Xiangtan University
基金
湖南省自然科学基金
关键词
BENT函数
广义e-Bent函数
布尔函数
仿射分类
Bent function,Extended e-Bent function,affine classification,Boolean
function,Balance function,Extended Correlation-Immune