期刊文献+

基于核的密度函数聚类的彩色图像分割方法

Color Image Segmentation Based on Kernelized Density Function Clustering Algorithm
下载PDF
导出
摘要 提出一种基于核方法的密度函数聚类方法和小波变换的快速彩色图像分割方法。对密度函数聚类方法改进,通过引入核方法生成基于核的密度函数聚类,用于彩色图像聚类数目上限和初始聚类中心;利用小波变换的多分辨率特性,在分辨率最大的子带进行聚类数目的确定以减少计算量,然后把分割结果逐层延伸到原始尺寸图像得到最终分割结果。 The paper proposes a color image Segmentation algorithm based on Kernelized density function clustering algorithm and wavelet transform. A Kernelized density function clustering algorithm is presented by combining kernel function and density function clustering algorithm to define the optimal cluster number and initialize cluster centers; By using the multi-resolution of wavelet transform, defining the optimal cluster number is implemented on the sub-band of maximum size to reduce computing load and the coarse segmentation is used to initialize the next level until the initial image.
作者 王丽丽 陈瑞志 付世凤 WANG Li-li, CHEN Rui-zhi, FU Shi-feng (Cunjin College of Guangdong Ocean University, Zhanjiang 524000, China)
出处 《电脑知识与技术》 2010年第7期5292-5294,5296,共4页 Computer Knowledge and Technology
关键词 核方法 密度函数 图像分割 小波变换 kernel function density function image segmentation wavelet transform
  • 相关文献

参考文献6

  • 1Chiu S L.Fuzzy model identification based on cluster estimation[J].Intelligent and Fuzzy System,1994(2):267-278.
  • 2Girolami M.Mercer Kernel Based Clustering in Feature Space[J].IEEE Trans on NeuralNetworks,2002,13(3):780-784.
  • 3蔡卫菊,张颖超.基于核的模糊聚类算法[J].计算机工程与应用,2006,42(18):173-175. 被引量:5
  • 4伍忠东,高新波,谢维信.基于核方法的模糊聚类算法[J].西安电子科技大学学报,2004,31(4):533-537. 被引量:75
  • 5Jian-Li Ding,Yuan-Xiang Li,Ling-Ling Wang.A wavelet-based color multiresolution image segmentation[C].In:Proceedings of international Conference on Neural Networks and Brain(ICNN&B'05).Beijing,2005(2):1107-1111.
  • 6裴继红,范九伦,谢维信.聚类中心的初始化方法[J].电子科学学刊,1999,21(3):320-325. 被引量:42

二级参考文献19

  • 1钱夕元,邵志清.模糊ISODATA聚类分析算法的实现及其应用研究[J].计算机工程与应用,2004,40(15):70-71. 被引量:17
  • 2李映,张艳宁,赵荣椿.核学习机研究[J].计算机工程与应用,2004,40(17):4-6. 被引量:4
  • 3伍忠东,高新波,谢维信.基于核方法的模糊聚类算法[J].西安电子科技大学学报,2004,31(4):533-537. 被引量:75
  • 4Dave R N. Generalized Fuuzy C-shell Clustering and Detection of Circular and Elliptical Boundaries[J]. Pattern Recognition, 1992, 25(7): 639-641.
  • 5Krishnapuram R, Frigui H, Nasraui O. The Fuzzy C Quadric Shell Clustering Algorithm and the Detection of Second-degree[J]. Pattern Recognition Letters, 1993, 14(7): 545-552.
  • 6Girolami M. Mercer Kernel Based Clustering in Feature Space[J]. IEEE Trans on Neural Networks, 2002, 13(3): 780-784.
  • 7Burges C J C. Geometry and Invariance in Kernel Based Methods[A]. Advance in Kernel Methods-Support Vector Learning[C]. Cambridge: MIT Press, 1999. 89-116.
  • 8Scholkopf B, MIka S, Burges C, et al. Input Space Versus Feature Space in Kernel-based Methods[J]. IEEE Trans on Neural Networks, 1999, 10(5): 1000-1017.
  • 9Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York: Plenum Press, 1981.
  • 10Bezdek J C. Convergence Theory for Fuzzy C-Means: Counterexamples and Repaires[J]. IEEE Trans on SMC, 1987, 17(4): 873-877.

共引文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部