摘要
对一般的偏微分方程,其Sobolev指数为(n2+1),Ponce和Sideris(Commun.inPDE,1993,18(2~4):169)证明了对一些具特殊非线性项的半线性方程,如ut-Δu=uk(Du)α(x∈Rn,k∈Z+,ρ=|α|≥2),其Sobolev指数会在n2与(n2+1)之间,本文研究半线性电报方程ut-Δu+pu=uk(Du)α(x∈Rn,k∈Z+,ρ=|α|≥2,p≠0),得到了其Sobolev指数仍然在区间(n2,n2+1)之内。
It is well known that the Sobolev exponent for general partial differential equations is n2+1. Ponce and Sideris (Commun. in PDE,1993,18(2~4):169) obtained that the sobolev exponent belongs to the interal (n2,n2+1) for some special semilinear equations, such as u tt - Δ u=u k(Du) α(x∈R n,k∈Z +,ρ=|α|≥2). This paper studies the semilinear telegram equation u tt - Δ u+pu=u k(Du) α(x∈R n,k∈Z +,ρ=|α|≥2,p≠0), and proves that the Sobolev exponent is still in the interal (n2,n2+1) . Therefore, the result can be regarded as a continuation of Ponce and Sideris work.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
1999年第2期145-148,共4页
Journal of Sichuan Normal University(Natural Science)