期刊文献+

两种学习算法在算术关系抽取中的应用比较

A Comparative Study of Two Machine Learning Methods for Arithmetical Relation Extraction of Addition and Subtraction Word Problems
下载PDF
导出
摘要 加减文字题是小学数学的一个重点和难点问题,长期以来,人们对加减文字题的研究局限于教育学和心理学领域,该文从文本分类以及信息检索的角度出发,将加减文字题中的算术关系看成是一个分类问题,尝试用机器学习的方法来对其进行分类,分别研究了人工神经网络(ANN)和支持向量机(SVM)在加减文字题算术关系抽取中的应用,并对两种算法的试验结果进行了比较和分析。通过分词,关键词选取,构造特征向量,分别运用两种算法对其进行分类。对试验结果进行评测发现,在一定条件下SVM算法明显优于ANN算法。 Addition and subtraction word problems are found very difficult to both teacher and children in elementary school. The research on addition and subtraction word problems has been confined to education and psychology fields for a long time. In a viewpoint of text categorization and information retrieval, the arithmetical relation in these problems is considered as a categorization task and studied with machine learning methods. In this paper, word problems are segmented firstly into words by software. Some
作者 苏林忠 SU Lin-zhong (The Office of Information, South China University of Technology, Guangzhou 510640, China)
出处 《电脑知识与技术》 2010年第7期5302-5304,共3页 Computer Knowledge and Technology
关键词 加减文字题 人工神经网络 支持向量机 关系抽取 文本分类 中文信息处理 are selected and formed into feature vector. Two machine learning methods Support Vector Machines (SVM) and Artificial Neural Network (ANN) are compared when they are used in the relation extraction respectively. The empirical result indicates that SVM is more effective than ANN in our experiments. Key words: add and subtraction word problems ANN SVM relation extraction text categorization Chinese information processing
  • 相关文献

参考文献2

二级参考文献17

  • 1刘广珠.儿童解决算术应用题认知加工过程及比较图式形成的实验研究[J].心理发展与教育,1996,12(2):1-5. 被引量:11
  • 2徐敏毅.4—8岁儿童解决算术应用题认知加工过程的实验研究(Ⅱ)[J].心理发展与教育,1995,11(4):16-21. 被引量:4
  • 3何纪全.关于小学生对应用题结构认知发展的初步研究(Ⅰ)[J].心理学报,1988,20(1):8-14. 被引量:6
  • 4In: Proceedings of the 6th Message Understanding Conference (MUC - 7) [ C ]. National Institute of Standars and Technology, 1998.
  • 5C. Aone and M. Ramos-Santacruz. Rees: A large-scale relation and event extraction system[A]. In: Proceedings of the 6th Applied Natural Language Processing Conference[C] ,pages 76- 83, 2000.
  • 6S. Miller, M. Crystal, H. Fox, L. Ramshaw, R. Schwartz, R. Stone, R. Weischedel, and the Annotation Group.Algorithms that learn to extract information-BBN: Description of the SIFT system as used for MUC[ A]. In: Proceedings of the Seventh Message Understanding Conference (MUC-7)[C], 1998.
  • 7S. Soderland. Learning information extraction rules for semi-structured and free text[J]. Machine Learning, 1999. 34(1 - 3) :233 - 272.
  • 8N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines[ M]. Cambridge University Press,Cambirdge University, 2000.
  • 9T. Zhang. Regularized winnow methods[A]. In: Advances in Neural Information Processing Systems 13[C], pages703 - 709, 2001.
  • 10D. Haussler. Convolution kernels on discrete structures[R]. Technical Report UCSC-CRL- 99- 10, 7, 1999.

共引文献131

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部