摘要
设Nn是常曲率空间Mn+1(c)中的紧致拟脐超曲面.证明了在一些几何条件下,Nn中不存在p-维稳定积分流,相应地,Nn的p-维同调群消没.
Let N n
be a compact quasi umbilical hypersurface immersed in a Riemannian manifold M n+1 (c) of
constant curvature.It is proved that under some geometrical conditions,there exists no stable
integral p current in N n and thus the homology group of N n vanishes.
出处
《烟台师范学院学报(自然科学版)》
1999年第1期21-24,共4页
Yantai Teachers University journal(Natural Science Edition)
关键词
拟脐超曲面
稳定积分流
常曲率空间
quasi
umbilical hypersurface,shape operator,stable integral current,homology group,homeomorphism