期刊文献+

偏稳健M回归在人体血糖浓度近红外无创检测中的应用 被引量:6

Application of Partial Robust M-Regression in Noninvasive Measurement of Human Blood Glucose Concentration with Near-Infrared Spectroscopy
下载PDF
导出
摘要 采用偏稳健M回归方法有效地解决了人体血糖浓度近红外无创检测研究过程中由于样本奇异值影响模型稳健性的问题。该方法源于现有的迭代变权偏最小二乘法,计算快、易于实现,具有M估计的所有性质,且当权函数选择合适时,能降低奇异值的影响,建立具有稳健性的校正模型。采用该方法对近红外光谱实验数据进行了处理,并与传统的偏最小二乘(partialleast squares,PLS)建模方法进行了比较。结果表明,与PLS相比,该方法可建立稳健的校正模型提高预测精度,更适合复杂样品建模,对于人体血糖浓度近红外无创检测的进一步研究具有应用价值。 In the study of non-invasive measurement of human blood glucose concentration with near-infrared spectroscopy,the partial robust M-regression (PRM) is proposed in the present paper to solve the robustness of calibration model affected by outliers existing in the spectra data set.While keeping the good properties of M-estimators if an appropriate weighting scheme is chosen,PRM inherits the speed of computation and easy realization of the iterative reweighted partial least squares (IRPLS) algorithm,but is robust to all types of outliers.With the pretreatment of spectra based on PRM,the root mean square error of prediction (RMSEP) of calibration model was presented and compared with partial least squares (PLS).Experimental results show that the robust calibration model PRM produces better prediction of glucose than the model of PLS when the components of the samples increase which is significant for non-invasive prediction of blood glucose levels.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2010年第8期2115-2119,共5页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(60708026) 北京航空航天大学蓝天新星项目资助
关键词 偏稳健M回归 偏最小二乘 稳健性 近红外光谱 血糖浓度 Partial robust M-regression Partial least-squares Robustness Near infrared spectroscopy Human blood glucose
  • 相关文献

参考文献13

二级参考文献20

  • 1李刚,王焱,李秋霞,李晓霞,林凌,刘玉良.动态光谱法对提高近红外无创血液成份检测精度的理论分析[J].红外与毫米波学报,2006,25(5):345-348. 被引量:33
  • 2许禄.化学计量学方法[M].北京:科学出版社,1997.101.
  • 3许禄.Chemometrics Methods(化学计量学方法)[M].Beijing(北京):Sciences Press(科学出版社),1997..
  • 4Chen Da, Shao Xueguang, Hu Bin, et al. A Background noise elimination method for quanlilative valibration of near infrared spectra [ J ]. Analytica Chimica Acta, 2004, 511( 1 ) :37-45.
  • 5Tan Hu-Wei, Brown S D. Wavelet analysis applied to removing non-constant varying spectroscopic background in multivariate calibration [ J ]. Journal of Cbemometrics,2002,16 ( 5 ) : 228-240.
  • 6Centner V, Massart D L, De Noord O E, et al. Elimination of uninformative variables for multivariate calibration [ J ]. Analytical chemistry, 1996,68 ( 21 ) :3851 -3858.
  • 7Jouan-Rimbaud D, Walczak B, Poppi R J, et al. Application of wavelet transform to extract the relevant component from spectral data for multivariate calibration[ J ]. Analytical chemistry, 1997,69 ( 21 ) :4317-4323.
  • 8李庆波,张广军,徐可欣,汪曣.应用数字傅里叶滤波方法提高近红外光谱多元校正模型稳健性的研究[J].光谱学与光谱分析,2007,27(8):1484-1488. 被引量:5
  • 9Hazen Kevin H,Arnold Mark A,Small Gary W.Temperature-insensitive near-infrared spectro scopic measurement of glucose in aqueous solutions[J].Applied Spectroscopy,1994,48(4):477-483.
  • 10Pan Shengtian,Chung Hoeil,Arnold Mark A.Near-infrared spectroscopic measurement of physiological glucose levels in variable matrices of protein and triglycerudes[J].Analytical Chemistry,1996,68(7):1124-1134.

共引文献42

同被引文献65

引证文献6

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部