期刊文献+

双向混合交通OD分布与用户平衡配流组合模型及算法 被引量:2

A Modeling Algorithm by Combining Two-way Mixed OD Distribution and User Equilibrium Assignment
下载PDF
导出
摘要 传统四阶段法中,运量分布与均衡配流这2个阶段独立进行。在此背景下,基于我国城市道路机动车与非机动车混合双向行驶的特点和交通网络中各地区发展的不平衡性,借助于引力模型,建立了带有双约束的双向混合交通运量分布与均衡配流组合模型。在此基础上,进一步利用最优化的知识证明了模型的一阶条件与Wardrop用户平衡条件等价、模型解的惟一存在性及其OD流量满足运量分布的引力模型。给出了求解模型的具体算法,并通过算例证明了模型的一阶条件等价性。 In the traditional four-step method,traffic distribution and equilibrium flow assignment operate independently,which artificially disjoint the continuous process of traffic movement.In this context,based on the features of mixed traffic and uneven regional development over a network,a double constrained two-way combined traffic distribution and equilibrium model for the mixed traffic is proposed based on gravity model.In addition,this paper provides the proof of the equivalence of the first-order condition of the proposed model with Wardrop user equilibrium condition,the existence and uniqueness of solution of the model and OD flows satisfying traffic distribution and gravity assignment using!the optimization theory.Finally,the paper provides a solution algorithm of the model and proves the first-order condition of the model through an example.
出处 《交通信息与安全》 2010年第3期6-11,共6页 Journal of Transport Information and Safety
基金 国家自然科学基金项目(批准号:10761001)资助
关键词 双向混合交通 路段阻抗函数 双约束的运量分布 two-way mixed traffic road impedance function double-constrained traffic distribution
  • 相关文献

参考文献9

二级参考文献23

  • 1黄海军,顾昌耀.城市交通需求分析方法论的发展[J].中国公路学报,1995,8(2):31-37. 被引量:5
  • 2刘安,杨佩昆.混合交通均衡配流模型及其算法的研究[J].公路交通科技,1996,13(3):21-28. 被引量:25
  • 3解可新 韩立兴.最优化方法[M].天津:天津大学出版社,2001.99-130.
  • 4陆化普,殷亚峰.交通网络均衡分析的变分不等式方法[J].公路交通科技,1997,14(2):24-29. 被引量:9
  • 5黄海军,城市交通网络平衡分析理论与实践,1994年
  • 6Smith M J. The existence, uniqueness of stability of traffic equilibrium[J ]. Transportation Research Part B,1979,13:293~304.
  • 7Murchland J D.Some Remarks on The Gravity Model of Traffic Distribution and An Equivalent maximization Formulation. LSE-TNT-38, Transport Network Theory, London Graduate School of Business Studies, 1966.
  • 8Tomlin J A.Mathematical Programming Model for Traffic Network Problem.PhD thesis, Dept.Of Civil Engineering, University of Adelaide, Australia, 1967.
  • 9Tomlin J A.Mathematical Programming Model for The Combined Distribution- Assigrnment of Traffic.Transportation Science,1971,5:122--140.
  • 10Evans S P.Derivation and Analysis of Some Models for Combining Trip Distribution and Assignment.Transportation Research,1976,10:37--57.

共引文献82

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部