期刊文献+

量子纠缠态

Quantum Entangled State
下载PDF
导出
摘要 量子纠缠态是量子力学的精髓,纠缠态在量子计算和量子通讯中起着重要作用.本文系统的介绍了量子纠缠态,从他的起源、定义、常见纠缠态及纠缠度进行了说明。 Entanglemcnt is the soul of quantum mechanics. Entangled state and entanglement have important action in quantum computation and quantum communication. This paper introduces the system of quantum entanglement and from his origins, definition, common, entangled state and entanglement.
作者 刘坤
机构地区 宜春学院
出处 《科技信息》 2010年第21期I0234-I0235,共2页 Science & Technology Information
关键词 纠缠态 BELL态 纠缠度 Entangled state Bell state Entanglement
  • 相关文献

参考文献10

  • 1李嵩松,黄亦斌,聂义友.非最大纠缠信道的受控量子超密编码[J].激光杂志,2008,29(4). 被引量:3
  • 2A.Einstein, B. Podolsky, N.Rosen. Can Description of Physical Reality be Considered Complete? [J]. Phys. Rev. A, 1935, 47:777-780.
  • 3李克轩,李文博,李烨,李宓善,李亚玲.量子纠缠态与量子隐形传态[J].北方交通大学学报,2004,28(3):64-69. 被引量:2
  • 4J. S. Bell. On the problem of hidden variables in quantum mechanics [J]. Rev.Mod. Phys., 1966, 38:477-482 J. S. Bell, Physics, 1964,1:195.
  • 5D. M. Greenberger, M. A. Home, A. Shimony and A. Zeilinger. Bell's theorem without inequalities[J]. Am. J. Phys., 1990, 58:1131.
  • 6W.Dur G. Vidal and J. I. Cirac. Three qubits Can be entangled in two inequivalent ways[J]. Phys. Rev. A, 2000, 62: 062314-062325.
  • 7H. J. Briegel and R. Raussendorf, Persistent Entanglement in Arrays of Interacting Particles [J] Phys. Rev. Lett. 86, 910 (2001).
  • 8左战春,夏云杰.Tavis-Cummings模型中三体纠缠态纠缠量的演化特性[J].物理学报,2003,52(11):2687-2693. 被引量:42
  • 9D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum computer, Proceedings of the Royal Society of London A, 1985, 400:97.
  • 10王宝泉.量子纠缠态及其描述[J].德州学院学报,2004,20(2):21-23. 被引量:1

二级参考文献58

  • 1[1]A. Ekert,R. Jozsa. Quantum computation and Shor's factoring algorithm [J]. Rev. Mod. Phys, 1996,68,733.
  • 2[2]C. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A.Peres, W. K. Wootters. Teleporting an unknown quantum state via dual classical and Einstein-Podol sky-Rosen channels [J]. Phys. Rev. Lett. , 1993,70,1895.
  • 3[3]C.H. Bennett,S. J. Wiesner. Communication via oneand two-particle operators on Einstein-Podolsky-Rosen states. [J]. Phys. Rev. Lett. ,1992,69,2881.
  • 4[7]C.H. Bennett, D. P. DiVincenzo, J. Smolin, W. K.Wootters. Mixed-state entanglement and quantum error correction [J]. Phys. Rev. , 1996,54: 3824.
  • 5[1]A.Einstein,B.Podolsky and N.Rosen.Can quantum-mechanical description of physical reality be considered Complete?[J].Phys.Rev.,1935,47:777-780.
  • 6[2]C.H.Bennett,G.Brassard,C.Crepeau,et al.Teleporting an un-known quantum state via dual classical and Einstein-Podolsky-Rosen Channels[J].Phys.Rev.Lett.,1993,70,1895-1899.
  • 7[3]C.H.Bennett and S.J.Wiesner.Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states[J].Phys.Bey.Lett.,1992,69:2881-2884.
  • 8[4]A.K.Akert.Quantum cryptography based on Bell's theorem[J].Phys.Rev.Lett.,1991,67:661-663.
  • 9[5]X.S.Liu,G.L.Long,D.M.Tong and F.Li.General scheme for su-perdonse coding between multiparties[J].Phys.Rev.A,2002,65:022304-022307.
  • 10[6]A.Grudka and A.Wojcik.Symmetric scheme for superdense coding between multiparties[J].phys.Rev.A,2002,66:014301-014302.

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部