期刊文献+

基于时变假设的修正负二项车险索赔频率精算模型

Negative Binomial Claim Frequency Model Modified by Time-Varying Hypothesis in Automobile Insurance
下载PDF
导出
摘要 传统车险索赔频率模型都采用风险水平在保险期间保持不变的假设,采用风险水平时变假设,选择Weibull过程作为风险强度函数,引入传统的负二项索赔频率模型。新模型修改原有频域方法为时域参数方法进行参数估计,并使用极大似然估计结合贝叶斯估计的方法估计出Weibull过程的水平参数λ和形状参数β。在β=1时,新模型就等价于传统负二项模型;此外,新模型可为风险上升(β>1)和风险下降(β<1)的保单确定更准确的风险保费。 Traditional claim frequency models of automobile insurance are based on time-constant risk intensity hypothesis.This paper takes time-varying risk intensity hypothesis.Firstly,new model introduces Weibull Process as risk intensity function into traditional Negative Binomial claim frequency model.Then,new model estimates level parameter λ and configuration parameter β of Weibull Process,using time base parameter estimation methods of Bayes Estimation and Most Likely Estimation.If β=1,new model is(equivalent) to traditional Negative Binomial claim frequency model;else,new model can rate more precise risk premium for risk ascending(β〉01) and descending(β〈1) individuals.
作者 郁佳敏
出处 《系统管理学报》 CSSCI 北大核心 2010年第3期339-344,共6页 Journal of Systems & Management
基金 上海市教委科研创新项目(09YZ410) 上海市教委重点学科建设资助项目(J51601)
关键词 时变 Weibull过程 索赔频率 负二项模型 车险 time-varying weibull process claim frequency negative binomial model automobile insurance
  • 相关文献

参考文献14

  • 1Lemaire J. Bonus-malus systems in automobile Insurance [M]. Boston: Kluwer Academic Publishers, 1995.
  • 2Bichsel F. Une methode pour calculer une ristourne adequate pour anees sans sinistres [J]. ASTIN Bulletin, 1960, 1(3): 106-112.
  • 3Derron M. A theoretical study of the no-claim bonus problem [J]. ASTIN bulletin, 1963, 3(1): 62-74.
  • 4Albrecht P. Testing the goodness of fit of a mixed poisson process [J]. Insurance: Mathematics and Economics, 1982, 1(1): 27-33.
  • 5Albrecht P. Laplace transforms, mellin transforms and mixed poisson processes [J]. Scandinavian Actuarial Journal, 1984,11:58- 64.
  • 6Tremblay L. Using the poisson inverse gaussian in bonus-malus systems [J]. ASTIN Bulletin, 1992, 22 (1) : 97-106.
  • 7Walhin J F, Paris J. Using mixed poisson processes in connection with bonus-malus system [J]. ASTIN Bulletin, 1999, 29(2): 81-99.
  • 8Niemiec M. Bonus-malus systems as markov setchains [J]. ASTIN Bulletin, 2007, 37(1) : 53-65.
  • 9Dionne G, Vanasse C. A generalization of actuarial automobile insurance rating models; the negative binomial distribution with a regression component [J], ASTIN bulletin, 1989, 19(1): 199-212.
  • 10Frangos N E, Vrontos S D. Design of optimal bonusmalus system with a frequency and a severity component on an individual basis in automobile insurance [J]. ASTIN Bulletin, 2001, 31(1): 1-22.

二级参考文献2

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部