期刊文献+

参数未知自相关过程的自适应边界调整策略 被引量:2

Adaptive Deadband Adjustment Policy for Autocorrelation Process with Unknown Parameters
下载PDF
导出
摘要 针对参数未知的自相关过程的质量控制问题,研究了每次调整成本固定下的自适应调整策略。建立了过程的状态空间方程模型以及未知参数的贝叶斯模糊先验分布,利用序贯蒙特卡洛法估计未知参数值进而得到了过程每个阶段的调整边界线,从而确定使过程总体损失最小的边界调整策略;给出了基于序贯蒙特卡洛法的边界调整策略的算法步骤,并通过算例验证了调整策略的有效性。结果表明,该调整策略具有较好的调整效果。 Aiming at the quality control problem of autocorrelation process with unknown parameters,the adaptive adjustment policy for the situation of fixed adjustment cost is studied.The state space process control model and Bayesian vague prior distribution of unknown parameters are built.To use sequential Monte Carlo(SMC) method estimates the values of unknown parameters,then the deadband of each stage is achieved,furthermore the deadband adjustment policy for minimum the total process loss is obtained.The algorithm to derive the deadband adjustment policy based on SMC is introduced.An example is given to verify the effectiveness of the approach.The results show that the adjustment policy can achieve good adjustment performance.
出处 《系统管理学报》 CSSCI 北大核心 2010年第3期356-360,共5页 Journal of Systems & Management
基金 国家自然科学基金资助项目(70672088)
关键词 序贯蒙特卡洛法 自相关过程 统计过程控制 边界调整 sequential Monte Carlo method autocorrelation process statistical process control deadband adjustment
  • 相关文献

参考文献12

  • 1Box G E P, Jenkins G. M. Further contributions to adaptive quality control: Simultaneous estimation of dynamics nonzero costs [J]. Bulletin of the International Statistical Institute, 1963, 34: 943-974.
  • 2Luceno A. Effects of adjustment errors on discrete feed-back dead band control schemes [J]. The Statistician, 2001, 50(2): 169-177.
  • 3Luceno A. Selection of sample size for discrete feedback dead-band control schemes [J]. Communications in Statistics - Theory and Methods, 2001, 30 (4) : 679-689.
  • 4Luceno A. Minimum cost dead band adjustment schemes under tool-wear effects and delayed dynamics [J]. Statistics and Probability Letters, 2000, 50: 165-178.
  • 5Chou Shihyu, Wang Min-Chiang. Setting policy for on-line process control with dynamic characteristics [J]. Communications in Statistics-Simulation and Computation, 2007, 36(1): 217-232.
  • 6Lian Z, Del Castillo E. Adaptive deadband control of a drifting process with unknown parameters [J]. Statistics and Probability Letters, 2007, 77(8): 843- 852.
  • 7Berger J O, Oliveira V D, Sanso B. Objective Bayesian analysis of spatially correlated data [J]. Journal of the American Statistical Association, 2001, 96(456) 1361-1374.
  • 8Spiegelhalter D J, Abrams K R, Myles J P. Bayesian approaches to clinical trials and health-care evaluation [M]. West Sussex: John Wiley & Sons, 2004, 168-174.
  • 9Cappe O, Godsill S J, Moulines E. An overview of existing methods and recent advances in sequential Monte Carlo[J]. Proceedings of The IEEE Special Issue on Large-Scale Dynamic Systems, 2007, 95 (5): 899-924.
  • 10Balakrishnan S, Madigan D. A one-pass sequential Monte Carlo method for Bayesian analysis of massive datasets[J]. Bayesian Analysis, 2006, 1(2): 345-362.

同被引文献12

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部