期刊文献+

羊膜细胞Ⅰ型胶原蛋白支架复合物用于修复胎膜破口的研究 被引量:1

Utility of amniotic cells plus collagen Ⅰ complex for fetal membrane healing
原文传递
导出
摘要 目的 探讨羊膜细胞I型胶原蛋白支架复合物用于修复胎膜破口的可行性.方法 将人羊膜间质细胞接种在I型胶原蛋白三维基质中,人羊膜上皮细胞接种在基质的表面,构建羊膜细胞/Ⅰ型胶原蛋白支架复合物以模拟人体羊膜组织结构.DAPI标记三维基质中的细胞核以计数羊膜细胞在三维培养第2,8天的细胞数量.动态测定羊膜细胞/Ⅰ型胶原蛋白复合物体积.培养含有不同数量羊膜间质细胞的羊膜细胞/I型胶原蛋白支架复合物,15 d后检测抗张强度.结果 第2天和第8天的细胞数目分别是(121±5)/cm2和(124±4)/cm2(P〉0.05).第5天时,I型胶蛋白的面积为原体积的45%,第10天时约为15%,第15天时约为原14%,羊膜间质细胞的存在对于Ⅰ型胶原蛋白基质具有重新塑形的作用(P〈0.01),羊膜间质细胞可以导致I型胶原蛋白的收缩,抑肽酶和GM6001也不能抑制这种收缩.羊膜细胞/Ⅰ型胶原蛋白复合物抗张强度随人羊膜间质细胞数量的增多而增强(P〈0.01).结论 羊膜细胞/Ⅰ型胶原蛋白支架复合物有望成为修复胎膜破口的材料. Objective To study the feasibility of using amniotic cells plus collagen I complex for fetal membrane healing. Methods Human amnion mesenchymal ceils were embedded in three-dimensional (3D) collagen I and epithelial cells placed on the top. The amniotic cells plus collagen I complex was created to mimic the architecture of native amnion. As judged by DAPI staining, the number of amniotic cells cultured in 3D collagen I was counted after incubation for 2 and 8 days. The tensile strength of collagen I with a varying number of amniotic mesenchymal cells was measured after a 15-day incubation. Results At Days 2 and 8, the mean number of mesenchymal cells was ( 121±5 )/cm2 and (124±4)/cm2 (P 〉0. 05). The size of collagen I matrix was reduced to 45%, 15%, 14% at Days 5, 10, 15 respectively. Mesenchymal cell was capable of remodeling collagen I ( P 〈 0. 01 ) and it could not be inhibited by GM6001 and/or aprotinin. The tensile strength of amniotic cells plus collagen I scaffold complex was strengthened with an increasing number of amnion mesenchymal cells ( P 〈 0.01 ). Conclusion The amniotic cells plus collagen I complex may be useful for healing preterm premature rupture of the membrane (PPROM).
作者 刘芳 漆洪波
出处 《中华医学杂志》 CAS CSCD 北大核心 2010年第27期1933-1935,共3页 National Medical Journal of China
关键词 羊膜细胞 Ⅰ型胶原蛋白 细胞支架复合物 Amniotic cells Collagen I Cell scaffold complex
  • 相关文献

参考文献8

  • 1Gratacós E,Sanin-Blair J.Lewi L,et al.A histological study of fetoscopic membrane defects to document membrane healing.Placenta,2006,27:452-456.
  • 2Devlieger R,Ardon H,Verbist L,et al.Increased polymorphonuclear infiltration and iatrogenic amniotic band after closure of fetoscopic access sites with a bioactive membrane in the rabbit at midgestation.Am J Obstet Gynecol,2003,188:844-848.
  • 3Wozniak MA,Keely PJ.Use of three-dimensional collagen gels to study mechanotransduction inT47D breast epithelial cells.Biol Proced Onhne,2005,7:144-161.
  • 4王铭洁,蔡文杰,姚泰,朱依纯.血管内皮细胞和心脏组织块的立体培养[J].生理学报,2005,57(2):259-269. 被引量:7
  • 5Hoerstrup SP,Cummings MI,Lachat M,et al.Functional growth in tissue-engineered living,vascular grafts:follow-up at 100 weeks in a large animal model.Circulation,2006,114(1 S):I159-I166.
  • 6Bryant-Greenwood GD.The extracellular matrix of the human fetal membranes:structure and function.Placenta,1998,19:1-11.
  • 7Millar LK,Boesche MH,Yamamoto SY,et al.A relaxin-mediated pathway to preterm premature rupture of the fetal membranes that is independent of infection.Am J Obstet Gynecol,1998,179:126-134.
  • 8Wideman GL.Baird GH.Bolding OT.Ascorbic acid deficiency and premature rupture of the fetal membranes.Am J Obstet Gynecol,1984,88:592-595.

二级参考文献20

  • 1Sweeney SM, DiLullo G, Slater S J, Martinez J, Iozzo RV,Lauer-Fields JL, Fields GB, San Antonio JD. Angiogenesis in collagen Ⅰ requires alpha 2 beta 1 ligation of a GFP*GER sequence and possibly p38 MAPK activation and focal adhesion disassembly. J Biol Chem 2003; 278: 30516-30524.
  • 2Montesano R, Pepper MS, Mohle-Steinlein U, Risau W,Wagner EF, Orci L. Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing the middle T oncogene. Cell 1990; 62: 435-445.
  • 3Helmlinger G, Endo M, Ferrara N, Hlatky L, Jain RK. Formation of endothelial cell networks. Nature 2000; 405: 139-141.
  • 4Nicosia RF, Ottinetti A. Growth of microvessels in serumfree matrix culture of rat aorta. A quantitative assay of angiogenesis in vitro. Lab Invest 1990; 63:115-122.
  • 5Vernon RB, Sage EH. A novel, quantitative model for study of endothelial cell migration and sprout formation within threedimensional collagen matrices. Microvasc Res 1999; 57:118-133.
  • 6Montesano R, Mouron P, Orci L. Vascular outgrowths from tissue explants embedded in fibrin or collagen gels: a simple in vitro model of angiogenesis. Cell Biol Int Rep 1985; 9: 869-875.
  • 7Korff T, Augustin HG. Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. J Cell Sci 1999; 112: 3249-3258.
  • 8Uehara M, Taguchi M, Asashima M, Pfeiffer CJ. Developmental physiology of cardiac contraction in the Japanese newt in vivo and in vitro. J Mol Cell Cardiol 1989; 21: 709-718.
  • 9Carmeliet P. Mechanisms of angiogenesis and arteriogenesis.Nature Med 2000; 6: 389-395.
  • 10Vailhe B, Vittet D, Feige JJ. In vitro models of vasculogenesis and angiogenesis. Lab Invest 2001; 81: 439-452.

共引文献6

同被引文献15

  • 1汤宇,谢佳芯,许家军.羊膜上皮细胞的干细胞样特性[J].解剖科学进展,2010,16(5):478-482. 被引量:4
  • 2Miki T, Lehmann T, Cai H, et al. Stem cell characteristics of amniotic epithelial cells [J]. Stem Cells, 2005, 23 (10): 1549-1559.
  • 3Bilic G, Hall H, Bittermann A G, et al. Human preterm amnion cells cultured in 3-dimensional collagen I and fibrin matrices for tissue engineering purposes [J]. Am J Obstet Gynecol, 2005,193(5):1724-1732.
  • 4Sakuragawa N, Thangavel R, Mizuguchi M, et al. Expression of markers for both neuronal and glial ceils in human amniotic epi- thelial cells [J]. Neurosci Lett, 1996,209(1) : 9-12.
  • 5Sub J K, Matthew H W. Application of chitosan-based polysac- charide biomaterials in cartilage tissue engineering: a review [J]. Biomaterials, 2000,21(24) : 2589-2598.
  • 6Grande D A, Halberstadt C, Naughton R, et al. Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts [J]. J Biomed Mater Res, 1997,34(2):211-220.
  • 7Marchand R, Woerly S, Bertrand L, et al. Evaluation of two cross-linked collagen gels implanted in the transected spinal cord [J]. Brain Res Bull, 1993,30(3-4) :415-422.
  • 8Liu S, Bodjarian N, Langlois O, et al. Axonal regrowth through a collagen guidance channel bridging spinal cord to the avulsed C6 roots: functional recovery in primates with brachial plexus injury [J]. J Neurosci Res, 1998,51(6):723-734.
  • 9Yan J, Qi N, Zhang Q. Rabbit articular chondrocytes seeded on collagen-chitosan-GAG scaffold for cartilage tissue engineering in vivo [J]. Artif Cells Blood Substit Immobil Biotechnol, 2007,35(4):333-344.
  • 10Zhang Y, Cheng X, Wang J, et al. Novel chitosan/collagen scaffold containing transforming growth factor-beta1 DNA for periodontal tissue engineering [J]. Biochem Biophys Res Com- mun, 2006,344(1) :362-369.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部