期刊文献+

人工听骨不同接入方式对耳结构动力响应的影响 被引量:11

Effect of different connecting methods for artificial ossicle on dynamic response of ear
下载PDF
导出
摘要 目的研究人工听骨接入方式对听力恢复的影响。方法通过CT扫描技术,结合自编C++程序读取CT数据中体单元建立人耳结构几何模型,将几何模型导入PATRAN中建立有限元数值模型。采用频率响应方法对耳结构模型进行流固耦合计算,同时分析人工听骨不同接入方式及接入位置对耳结构声音传导的影响。结果通过对正常人耳的动力响应分析,得到数值模型中计算出的鼓膜凸与镫骨底板振幅与试验数据吻合,验证本文模型的正确性。结论接在鼓膜凸的位置其动力响应最好,镫骨振幅高于其他连接方式。即人工听骨接在鼓膜凸的位置比较吻合人耳的生理功能,其重建听力效果更好。 Objective To study the effects of the different connecting mode of artificial ossicle on hearing restoration.Method Geometrical model of human ear was established by an original C++ program based on clinical CT data,and imported this geometrical model into finite element software PATRAN to build up the numerical finite element model of human ear structure.Based on the finite element model,the fluid-solid coupling was computed by harmonic response analysis method,and the effect of sound conduction on ear structure was analyzed according to different implantable methods and positions of artificial ossicle.Results The validity of this numerical model is confirmed by comparing the amplitude of umbo and stapes footplate on numerical model which is gained by dynamic response analysis on normal ear structure with published experimental measurements on human temporal bones.Conclusions Connecting artificial ossicle to tympanic membrane at its central position is optimal for the dynamic response of ear structure as the amplitude of stapes footplate under this situation is slightly higher than other connecting methods since it conforms to physiological function of human ear,and the effect of hearing recovery could be better.
出处 《医用生物力学》 EI CAS CSCD 2010年第3期175-181,共7页 Journal of Medical Biomechanics
基金 上海市科委基础研究重点项目(08jc1404700)
关键词 有限元 模型 流固耦合 动力响应 人工听骨 Finite element Model Fluid-solid coupling Dynamic response Artificial ossicle
  • 相关文献

参考文献7

二级参考文献67

  • 1刘迎曦,李生,孙秀珍.人耳鼓膜病变数值分析[J].医用生物力学,2008,23(4):275-278. 被引量:15
  • 2张官萍,崔涛,巫爱霞,李永奇.听骨检测实验装置[J].中国生物医学工程学报,2006,25(4):507-509. 被引量:2
  • 3张官萍,崔涛,巫爱霞,李永奇.中耳机械模型的建立及听骨赝复物传音特性的研究[J].中华耳鼻咽喉头颈外科杂志,2007,42(2):130-134. 被引量:3
  • 4Ogale SB, Mabajan SB, Dutt S, et al. Fate of middle ear implants. Auris Nasus Larynx, 1997, 24:151-157.
  • 5Schwager K. Titanium as a biomaterial for ossicular replacement: results after implantation in the middle ear of the rabbit. Eur Arch Otorhinolaryngol, 1998, 255: 396-401.
  • 6Dornhoffer JL. Hearing results with the domhoffer ossicular replacement prostheses. Laryngoscope, 1998, 108 (4 Pt 1): 531-536.
  • 7Goode RL, Rosenbaum ML, Maniglia AJ. The history and development of the implantable hearing aid. Otolaryngol Clin North Am, 1995, 28:1-16.
  • 8Yao Wenjuan, Huang Xinsheng, Fu Lijie. Transmitting vibration of artificial ossicle. International Journal of Nonlinear Sciences and Numerical Simulation, 2008, 9(2): 131-139.
  • 9O'Connor KN, Puria S. Middle ear cavity and ear canal pressure-driven stapes velocity responses in human cadaveric temporal bones. Journal of the Acoustical Society of America, 2006, 120(3): 1517-1528.
  • 10Mattia Ferrazzini. Virtual middle ear: a dynamic mathematical model based on the finite element method. [Ph D Thesis]. Swiss Federal Institute of Technology, 2003.

共引文献74

同被引文献152

引证文献11

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部